| 研究生: |
蔡翔宇 Tsai, Hsian-Yu |
|---|---|
| 論文名稱: |
一種以磁性人工纖毛進行微流體推進的動態流場分析及效能提升策略之研究 Enhancing Propulsion Performance of A Magnetically Actuated Artificial Cilia Based Microfluidic System through Fluid Dynamics Analysis |
| 指導教授: |
陳嘉元
Chen, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 微型幫浦 、人工纖毛 、微粒子影像測速儀 (μPIV) 、微流體 |
| 外文關鍵詞: | micropumps, artificial cilia, flow visualization, microfluidic |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物晶片具有多功能、反應快速、減少樣品消耗及低成本等優勢,需要可以精準控制晶片內樣品的操作。因此如何在晶片內傳輸樣品或藥物也是相當重要的一環,本論文提出一種利用磁性人工纖毛進行微流體推進之裝置,透過一個可由程式化控制之磁場驅動裝置操縱微流道內之磁性人工纖毛以 40 Hz 擺動,進行微流體的推進,並使用微粒子影像測速儀 (Micro-particle image velocimetry, μPIV) 分析流場資訊,分別針對纖毛推動機制、纖毛數量、纖毛分布及運動模式等參數作探討,並藉由這些實驗結果,用於進行裝置效能提升之策略。本研究之磁性人工纖毛以頻率 40 Hz 擺動,經由調整纖毛數量提高兩倍以上之淨流速,並可產生 15.4 μm/s 之淨流速以及 485.5 μm/s 以上之有效局部流動,並透過改變人工纖毛進行動力衝程與恢復衝程之路線,以三角形軌跡之運動模式成功地減少 56 % 的流體震盪現象。因此根據本論文研究結果,透過調整纖毛數量、分布及擺動模式之參數,可有效地增加人工纖毛應用於微流體推進之效能,本裝置可穩定地推動流體並產生有效地局部流動,未來可利用此局部流動於內皮細胞或紅血球等細胞觀察之實驗。人工纖毛除了可應用於微流體推進,亦可進行微流體混合等微流體操控,因此具有多功能操控微流體的人工纖毛,可滿足生物晶片多功能性且精準操控樣品的需求。
An artificial cilia based micropump is proposed, where a series of artificial cilia were employed that were rotating at a frequency of 40 Hz, through an external four-coil magnetic system, propels the fluid inside the microchannel. When artificial cilia traverse in a cyclic manner, the generated back flow during the recovery stroke and flow oscillation during artificial cilia actuation are inevitably significant. In order to improve the net pumping efficiency by reducing the backflow propagation and generated oscillation, the number, distribution and beating trajectory of artificial cilia inside the microchannel were optimized. It was observed that, the generated local flow speed can reach upto 485.5 μm/s with net flow speed 15.4 μm/s at a rotational frequency of 40 Hz. In addition, 56% of the flow generated due to the oscillation in the channel were eliminated by manipulating the trajectories respectively for both the power stroke and recovery stroke of artificial cilia.
[1] A. Manz, N. Graber, and H. á. Widmer, (1990). "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244-248.
[2] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, et al., (2006). "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418.
[3] A. K. Yetisen, M. S. Akram, and C. R. Lowe, (2013). "Paper-based microfluidic point-of-care diagnostic devices," Lab on a Chip, vol. 13, pp. 2210-2251.
[4] C. D. Chin, V. Linder, and S. K. Sia, (2012). "Commercialization of microfluidic point-of-care diagnostic devices," Lab on a Chip, vol. 12, pp. 2118-2134.
[5] A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Lüdi, et al., (1992). "Planar chips technology for miniaturization and integration of separation techniques into monitoring systems," Journal of Chromatography A, vol. 593, pp. 253-258.
[6] Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, et al., (1999). "Dynamic DNA Hybridization on a Chip Using Paramagnetic Beads," Analytical Chemistry, vol. 71, pp. 4851-4859.
[7] Y. J. Kim, Y. K. Joshi, A. G. Fedorov, Y. J. Lee, and S. K. Lim, (2010). "Thermal characterization of interlayer microfluidic cooling of three-dimensional integrated circuits with nonuniform heat flux," Journal of Heat Transfer, vol. 132, p. 041009.
[8] M. Gad-el-Hak, (1999). "The fluid mechanics of microdevices—the Freeman scholar lecture," Journal of Fluids Engineering, vol. 121, pp. 5-33.
[9] J. Linan, J. Mikkelsen, K. Jae-Mo, D. Huber, Y. Shuhuai, Z. Lian, et al., (2002). "Closed-loop electroosmotic microchannel cooling system for VLSI circuits," IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 347-355.
[10] A. Cobo, R. Sheybani, H. Tu, and E. Meng, (2016). "A wireless implantable micropump for chronic drug infusion against cancer," Sensors and Actuators A: Physical, vol. 239, pp. 18-25.
[11] A. Dash and G. Cudworth, (1998). "Therapeutic applications of implantable drug delivery systems," Journal of Pharmacological and Toxicological Methods, vol. 40, pp. 1-12.
[12] P. N. Karanth, V. Desai, and S. M. Kulkarni, (2010). "Modeling of single and multilayer polyvinylidene fluoride film for micro pump actuation," Microsyst. Technol., vol. 16, pp. 641-646.
[13] M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, (2011). "Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications," International Journal of Molecular Sciences, vol. 12, pp. 3648-3704.
[14] F. Abhari, H. Jaafar, and N. A. M. Yunus, (2012). "A comprehensive study of micropumps technologies," Int. J. Electrochem. Sci, vol. 7, pp. 9765-9780.
[15] P. Woias, (2005). "Micropumps—past, progress and future prospects," Sensors and Actuators B: Chemical, vol. 105, pp. 28-38.
[16] W. Spencer, W. T. Corbett, L. Dominguez, and B. D. Shafer, (1978). "An electronically controlled piezoelectric insulin pump and valves," Sonics and Ultrasonics, IEEE Transactions on, vol. 25, pp. 153-156.
[17] E. Stemme and G. Stemme, (1993). "A valveless diffuser/nozzle-based fluid pump," Sensors and Actuators A: physical, vol. 39, pp. 159-167.
[18] A. Olsson, G. Stemme, and E. Stemme, (1995). "A valve-less planar fluid pump with two pump chambers," Sensors and Actuators A: Physical, vol. 47, pp. 549-556.
[19] A. Ullmann, (1998). "The piezoelectric valve-less pump—performance enhancement analysis," Sensors and Actuators A: Physical, vol. 69, pp. 97-105.
[20] F. K. Forster, R. L. Bardell, M. A. Afromowitz, N. R. Sharma, and A. Blanchard, (1995). "Design, fabrication and testing of fixed-valve micro-pumps," ASME-PUBLICATIONS-FED, vol. 234, pp. 39-44.
[21] M. Nabavi, (2009). "Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review," Microfluidics and Nanofluidics, vol. 7, pp. 599-619.
[22] J. G. Smits, (1990). "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, pp. 203-206.
[23] C. Schabmueller, M. Koch, M. Mokhtari, A. Evans, A. Brunnschweiler, and H. Sehr, (2002). "Self-aligning gas/liquid micropump," Journal of Micromechanics and Microengineering, vol. 12, p. 420.
[24] M. Khoo and C. Liu, (2000). "A novel micromachined magnetic membrane microfluid pump," presented at the Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE.
[25] A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont, (2008). "MEMS-based micropumps in drug delivery and biomedical applications," Sensors and Actuators B: Chemical, vol. 130, pp. 917-942.
[26] D. J. Laser and J. G. Santiago, (2004). "A review of micropumps," Journal of Micromechanics and Microengineering, vol. 14, p. R35.
[27] J. Berg, R. Anderson, M. Anaya, B. Lahlouh, M. Holtz, and T. Dallas, (2003). "A two-stage discrete peristaltic micropump," Sensors and Actuators A: Physical, vol. 104, pp. 6-10.
[28] T. Bourouina, A. Bossebuf, and J. P. Grandchamp, (1997). "Design and simulation of an electrostatic micropump for drug-delivery applications," Journal of Micromechanics and Microengineering, vol. 7, p. 186.
[29] H. Gensler, R. Sheybani, P. Y. Li, R. L. Mann, and E. Meng, (2012). "An implantable MEMS micropump system for drug delivery in small animals," Biomedical Microdevices, vol. 14, pp. 483-496.
[30] J. Döpper, M. Clemens, W. Ehrfeld, S. Jung, K. Kaemper, and H. Lehr, (1997). "Micro gear pumps for dosing of viscous fluids," Journal of Micromechanics and Microengineering, vol. 7, p. 230.
[31] A. Hatch, A. E. Kamholz, G. Holman, P. Yager, and K. F. Böhringer, (2001). "A ferrofluidic magnetic micropump," Microelectromechanical Systems, Journal of, vol. 10, pp. 215-221.
[32] V. Patel and S. K. Kassegne, (2007). "Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations," Sensors and Actuators B: Chemical, vol. 122, pp. 42-52.
[33] J. Jang and S. S. Lee, (2000). "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors and Actuators A: Physical, vol. 80, pp. 84-89.
[34] A. Homsy, S. Koster, J. C. Eijkel, A. van den Berg, F. Lucklum, E. Verpoorte, et al., (2005). "A high current density DC magnetohydrodynamic (MHD) micropump," Lab on a Chip, vol. 5, pp. 466-471.
[35] A. V. Lemoff and A. P. Lee, (2000). "An AC magnetohydrodynamic micropump," Sensors and Actuators B: Chemical, vol. 63, pp. 178-185.
[36] S. Zeng, C. H. Chen, J. C. Mikkelsen, and J. G. Santiago, (2001). "Fabrication and characterization of electroosmotic micropumps," Sensors and Actuators B: Chemical, vol. 79, pp. 107-114.
[37] D. J. Laser, A. M. Myers, S. Yao, K. F. Bell, K. E. Goodson, J. G. Santiago, et al., "Silicon electroosmotic micropumps for integrated circuit thermal management," in TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, pp. 151-154.
[38] A. Brask, G. Goranović, M. J. Jensen, and H. Bruus, (2005). "A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate–pressure characteristics and stability," Journal of Micromechanics and Microengineering, vol. 15, p. 883.
[39] B. D. Iverson and S. V. Garimella, (2008). "Recent advances in microscale pumping technologies: a review and evaluation," Microfluidics and Nanofluidics, vol. 5, pp. 145-174.
[40] G. T. Kovacs, Micromachined transducers sourcebook: WCB/McGraw-Hill New York, NY, 1998.
[41] J. M. den Toonder and P. R. Onck, (2013). "Microfluidic manipulation with artificial/bioinspired cilia," Trends in Biotechnology, vol. 31, pp. 85-91.
[42] K. Sawamoto, H. Wichterle, O. Gonzalez-Perez, J. A. Cholfin, M. Yamada, N. Spassky, et al., (2006). "New neurons follow the flow of cerebrospinal fluid in the adult brain," Science, vol. 311, pp. 629-632.
[43] D. S. Parsons and B. A. Greene, (1993). "A treatment for primary ciliary dyskinesia: efficacy of functional endoscopic sinus surgery," The Laryngoscope, vol. 103, pp. 1269-1272.
[44] C. Y. Chen, C. Y. Chen, C. Y. Lin, and Y. T. Hu, (2013). "Magnetically actuated artificial cilia for optimum mixing performance in microfluidics," Lab on a Chip, vol. 13, pp. 2834-2839.
[45] C. Y. Chen, C. Y. Lin, and Y.-T. Hu, (2014). "Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing," Experiments in Fluids, vol. 55, pp. 1-9.
[46] D. Smith, J. Blake, and E. Gaffney, (2008). "Fluid mechanics of nodal flow due to embryonic primary cilia," Journal of The Royal Society Interface, vol. 5, pp. 567-573.
[47] R. Golestanian, J. M. Yeomans, and N. Uchida, (2011). "Hydrodynamic synchronization at low Reynolds number," Soft Matter, vol. 7, pp. 3074-3082.
[48] N. Osterman and A. Vilfan, (2011). "Finding the ciliary beating pattern with optimal efficiency," Proceedings of the National Academy of Sciences, vol. 108, pp. 15727-15732.
[49] S. Khaderi, J. den Toonder, and P. Onck, (2011). "Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis," Journal of Fluid Mechanics, vol. 688, pp. 44-65.
[50] M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, et al., (2010). "Self-assembled artificial cilia," Proceedings of the National Academy of Sciences, vol. 107, pp. 1844-1847.
[51] A. Shields, B. Fiser, B. Evans, M. Falvo, S. Washburn, and R. Superfine, (2010). "Biomimetic cilia arrays generate simultaneous pumping and mixing regimes," Proceedings of the National Academy of Sciences, vol. 107, pp. 15670-15675.
[52] L. D. Zarzar, P. Kim, and J. Aizenberg, (2011). "Bio‐inspired Design of Submerged Hydrogel‐Actuated Polymer Microstructures Operating in Response to pH," Advanced Materials, vol. 23, pp. 1442-1446.
[53] C. L. van Oosten, C. W. Bastiaansen, and D. J. Broer, (2009). "Printed artificial cilia from liquid-crystal network actuators modularly driven by light," Nature Materials, vol. 8, pp. 677-682.
[54] K. Oh, B. Smith, S. Devasia, J. J. Riley, and J.-H. Chung, (2010). "Characterization of mixing performance for bio-mimetic silicone cilia," Microfluidics and Nanofluidics, vol. 9, pp. 645-655.
[55] J. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, et al., (2008). "Artificial cilia for active micro-fluidic mixing," Lab on a Chip, vol. 8, pp. 533-541.
[56] A. S. Popel and P. C. Johnson, (2005). "Microcirculation and hemorheology," Annual Review of Fluid Mechanics, vol. 37, p. 43.
[57] T. Omori, Y. Imai, K. Kikuchi, T. Ishikawa, and T. Yamaguchi, (2015). "Hemodynamics in the Microcirculation and in Microfluidics," Annals of Biomedical Engineering, vol. 43, pp. 238-257.
[58] D. Tziakas, G. Chalikias, A. Grapsa, T. Gioka, I. Tentes, and S. Konstantinides, (2012). "Red blood cell distribution width–a strong prognostic marker in cardiovascular disease–is associated with cholesterol content of erythrocyte membrane," Clinical Hemorheology and Microcirculation, vol. 51, pp. 243-254.
[59] J. Dupire, M. Socol, and A. Viallat, (2012). "Full dynamics of a red blood cell in shear flow," Proceedings of the National Academy of Sciences, vol. 109, pp. 20808-20813.
[60] W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, et al., (1999). "Orthogonal polarization spectral imaging: a new method for study of the microcirculation," Nature Medicine, vol. 5, pp. 1209-1212.
[61] M. Kameneva, K. Garrett, M. Watach, and H. Borovetz, (1998). "Red blood cell aging and risk of cardiovascular diseases," Clinical Hemorheology and Microcirculation, vol. 18, pp. 67-74.
[62] C. Y. Chen, L. Y. Cheng, C. C. Hsu, and K. Mani, (2015). "Microscale flow propulsion through bioinspired and magnetically actuated artificial cilia," Biomicrofluidics, vol. 9, p. 034105.
[63] R. Lima, S. Wada, K. i. Tsubota, and T. Yamaguchi, (2006). "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, vol. 17, p. 797.
[64] C. Y. Chen, T. C. Chang Chien, K. Mani, and H. Y. Tsai, (2016). "Axial orientation control of zebrafish larvae using artificial cilia," Microfluidics and Nanofluidics, vol. 20, pp. 1-9.