| 研究生: |
謝坤諺 Hsieh, Kun-Yen |
|---|---|
| 論文名稱: |
一個十位元每秒取樣二十萬次0.7微瓦的逐漸趨近式類比數位轉換器 A 10-bit 200-kS/s 0.7-µW Successive-Approximation Analog-to-Digital Converter |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 類比至數位轉換器 、逐漸趨近式 、逐漸趨近式類比至數位轉換器 |
| 外文關鍵詞: | ADC, SAR ADC, SAR, analog-to-digital converter, successive approximation, low-power |
| 相關次數: | 點閱:109 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要實現一個十位元每秒取樣二十萬次的逐漸趨近式類比數位轉換器。為了降低功率消耗,在此論文中,提出跳躍式視窗(bypass window)的電路技巧來有效降低數位控制電路,比較器與電容陣列的能量消耗。除此之外,為了降低DAC單位電容與電容陣列的面積,我們採用新的電容架構,此架構電容可以減少寄生電阻、電容及對地雜訊。
本論文中的類比數位轉換器是使用TSMC 0.18-µm 1P6M互補金氧半製程下線驗證。核心電路的面積為160 µm x 320 µm。量測結果顯示在0.6-V的電壓及200kS/s的取樣頻率下,可達到有效位元數為9.2位元,消耗功率為0.73 µW,而FOM 是6.12fJ/conversion-step。
This thesis presents the design of a 10-bit 200-kS/s successive-approximation analog-to-digital converter (ADC). A bypass window-technique is proposed to reduce the power consumption of the digital control circuits, comparator, and capacitor array significantly. Additionally, a new capacitor, which has a very small feature size, is proposed to reduce the parasitic resistance and capacitance at the top plate for decreasing ground noise.
The ADC was fabricated in TSMC 0.18-µm 1P6M CMOS process with the active area of 160 µm x 320 µm. The measurement results show that the effective number of bits is 9.2 bits and the power consumption is 0.73 µW with a 0.6-V supply at 200kS/s, which consequently results in a figure-of-merit of 6.12fJ/conversion-step.
[1]H. C. Hong and G. M. Lee “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, pp. 2161-2168, Oc. 2007.
[2]N. Verma and A. P. Chandrakasan, “A 25-µW 100-kS/s 12-bit ADC for Wireless Micro-Sensor Application,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 822-831.
[3]D. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[4]Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications,” in IEEE ASSCC Dig. Tech. Papers, Nov. 2007, pp. 228-231.
[5]W. Y.Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Capacitor for Bio-Medical Applications,” in IEEE ASSCC Dig. Tech. Papers, Nov. 2009, pp. 149-152.
[6]S. K. Lee, S. J. Park, Y. Suh, H. J. Park, and J. Y. Sim, “A 1.3-µW 0.6-V 8.7-ENOB Successive Approximation ADC in 0.18-µm CMOS,” in Symp. on VLSI Circuitsd Dig .Tech.Paper, Jun. 2009, pp. 242-243.
[7]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 1.5-V 1-µW successive approximation ADC,“ in IEEE J. Solid-State Circuits, vol. 38, pp. 1261-1265, Jul. 2003.
[8]Gilbert Promitzer, “A 12-bit Low-Power Differential Switched Capacitor Non-calibrating Successive Approximation ADC with 1-MS/s, ” in IEEE J. Solid-State Circuit, vol. 36, pp.1138-1143, Jul. 2001.
[9]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92-mW 10-bit 50-MS/s SAR ADC in 0.13-µm CMOS process,” in Symp. on VLSI Circuits, Jun. 2009, pp. 236-237.
[10]B. P. Ginsburg and A. P. Chandrakasan “A 500-MS/s 5-bit ADC in 65-nm CMOS,” in IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun.2006, pp. 174-175.
[11]C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, pp. 731-740, Apr. 2010.
[12]Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U R. P. Martins and F. Maloberti, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, Jun. 2010.
[13]B. Razavi, Principles of Data Converter System Design, New York: Wiley, 1995.
[14]D. Aksin, M. Al-Shyoukh and F. Maloberti, “Switch Bootstrapping for Precise Sampling Beyond Supply Voltage,” IEEE J. Solid-State Circuits, vol. 41, pp. 1938-1943, Aug. 2006.
[15]B. P. Ginsburg and A. P. Chandrakasan, “Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver,” IEEE J. Solid-State Circuits, vol. 42, pp. 247-257, Feb. 2007.
[16]M. V. Elzakker et al., “A 1.9-µW 4.4 fJ/conversion-step 10-bit 1-MS/s charge-redistribution ADC,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 244–245.
[17]M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10-bit 50-MS/s 820-µW SAR ADC with on-chip Digital Calibration,” in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 384-385.
[18]S. K. Lee, S. J. Park, H. J. Park, and J. Y. Sim, “A 21- fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE J. Solid-State Circuits, vol. 46, pp. 651-659, Mar. 2011.
[19]S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, pp. 2669-2680, Dec. 2006.
[20]J. Yang, T. L. Naing and R. W. Brodersen, “A 1-GS/s 6-Bit 6.7-mW Successive Approximation ADC Using Asynchronous Processing,” IEEE J. Solid-State Circuits, vol. 45, pp. 1469-1478, Aug. 2010.
[21]B. P. Ginsburg and A. P. Chandrakasan, “An Energy-Efficient Charge Recycling Approach for a SAR Converter With Capacitive DAC,” in Proc. IEEE Int. Symp. Circuits and Systems, May 2005, pp. 184-187.
[22]Y.-K. Chang, C.-S. Wang, and C.-K. Wang, “A 8-bit 500-KS/s Low Power SAR ADC for Bio-Medical Applications,”in IEEE A-SSCC Dig. Tech. Papers, Nov. 2007, pp. 228-231.
[23]M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm2 8.9-bit ENOB 40-MS/s Pipelined SAR ADC in 65-nm CMOS,”in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 382-283.
[24]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, and S.-J. Chang, “A 9-bit 150-MS/s 1.53-mW Subranged SAR ADC in 90-nm CMOS,”in IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 243-244.
[25]W.-Y. Pang, C.-S. Wang, Y.-K. Chang, N.-K. Chou, and C.-K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications,”in IEEE A-SSCC Dig. Tech. Papers, Nov. 2009, pp. 149-152.
[26]Y.-D. Jeon, Y.-K. Cho, J.-W. Nam, K.-D. Kim, W.-Y. Lee, K.-T. Hong and J.-K. Kwon, “A 9.15-mW 0.22mm2 10-bit 204-MS/s Pipelined SAR ADC in 65-nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2010,pp.1-4
[27]C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1-V 11fJ/Conversion-Step 10-bit 10-MS/s Asynchronous SAR ADC in 0.18-μm CMOS,”in IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 241-242.
[28]C. Lillebrekke, C. Wulff and T. Ytterdal, “Bootstrapped switch in low-voltage digital 90-nm CMOS technology,”in Proc. 23rd NORCHIP Conference, Nov. 2005, pp. 234- 236.
[29]A. M. Abo and P. R. Gray, “A 1.5-V 10-bit 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
[30]黃冠穎, “Design of energy efficient successive-approximation analog-to-digital converter” MS Thesis, National Cheng-Kung Univ., Taiwan, Jul. 2007.