| 研究生: |
曾鴻泰 Tzeng, Horng-Tay |
|---|---|
| 論文名稱: |
核醣蛋白L5在紫外光引發的反應所扮演的可能角色 Involvement of ribosomal protein L5 in UV-induced damage response pathway |
| 指導教授: |
張敏政
Chang, Ming-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 細胞受損途徑調控 |
| 外文關鍵詞: | L5, p53, phosphorylation, DNA damage, RPA, apoptosis |
| 相關次數: | 點閱:106 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
RPA ( replication protein A ) 為一普遍存於真核細胞中之單股DNA結合蛋白,主要由RPA1、RPA2、RPA3三個subunits組成一穩定複合物。其功能主要和DNA之複製、修補、以及重組有關。RPA除了可與單股DNA結合外,亦和其他蛋白間有交互作用。過去研究顯示,RPA可與DNA polymerase α 及其它複製相關蛋白質結合,或是與XPA、XPG及uracil-DNA glycosylase 等與DNA修補相關之蛋白結合。此外,RPA2在細胞週期S phase時期有磷酸化現象。而當DNA損傷時,RPA2會因細胞內一些kinase之作用而有高度磷酸化現象。然而其真正的作用機制目前尚不清楚。因此,在先前的研究中,我們利用yeast-two-hybrid 之方法,篩選可能和磷酸化RPA2蛋白有交互作用之因子。初步選殖出有交互作用者為核糖蛋白L5。我們發現在in vitro 或in vivo下L5皆會與高度磷酸化之RPA2結合,而且complex裏還包含了RPA1。我們也證明了另一個 L5的結合蛋白MDM2在紫外光照射細胞後與L5的結合量會提升,而且MDM2必須在L5及磷酸化的RPA存在下才能與L5-磷酸化RPA產生交互作用;當我們以RNA干擾技術抑制L5的表現時,MDM2則不存在於磷酸化RPA complex裏。有趣的是我們發現L5 knock down會減弱p53受UV照射後serine 46位置的磷酸化,而且這個現象可在ARF不表現的情況下發生,但是serine 15位置的磷酸化則不受影響。最後我們發現L5在UV刺激後在細胞的位置會由核仁轉移到核質。這些結果證明了RPA2的高度磷酸化可能吸引了L5-MDM2 complex進而活化p53的damage response pathway,而L5在其中扮演了重要的角色。
Replication protein a (RPA) is a three subunits single-stranded DNA binding protein required for DNA replication, repair and recombination. RPA interacts specifically with essential repair proteins (e.g. XPA, XPG, and uracil-DNA glycosylase) and is required for loading of DNA polymerase α and additional replication fork proteins. In addition, the middle subunit of RPA (RPA2) is phosphorylated during the cell cycle S-phase and becomes hyper-phosphorylated in response to DNA damage. But its significance in the signaling of damage response pathway is poorly understood. Our previous studies found that a ribosomal protein L5 could interact with a truncated form of RPA2 in yeast two-hybrid system. Here we showed that the L5 protein specifically binds to hyperphosphorylated RPA2 in vitro and in vivo and this complex also contains RPA1. We demonstrated that the protein levels of L5 binding to the MDM2, a negative regulator of tumor suppressor p53, were decreased at the first 0.5 hr but subsequently were increased after UV irradiation. Moreover, MDM2 also associates with the L5-phosphorylated RPA protein complex in the L5 and phosphorylated RPA-dependent manner. Interestingly, the phosphorylation of p53 at serine 46, but not serine 15, was prevented by L5 small interfering RNA, and this inhibition is ARF independent. Finally, a fractionation assay revealed that the localization of L5 is changed from nucleolous to nucleoplasm upon UV treatment. Taken together, these results suggest that hyperphosphorylated RPA2 recruits L5-MDM2 complex to lead to the activation of p53 in response to UV damage.
1. obbe CR, Weissbach L, Borowiec JA, Dean FB, Marakami Y. 1987. Proc. Natl. Acad. Sci. USA 84:1834-38
2. Wold MS, Kelly T. 1988. Proc. Natl. Acad. Sci. USA 85:2523-27
3. Fairman MP, Stillman B 1988. EMBO J. 7:1211-18
4. Coverley D, Kenny MK, Munn M, Rupp WD, Lane DP, Wood RD. 1991. Nature 349:538-41
5. Coverley D, Kenny MK, Lane DP, Wood RD. 1992. Nucleic Acids Res. 20:3873-80
6. Heyer W-D, Rao MRS, Erdile LF, Kelly TJ, Kolodner RD. 1990. EMBO J. 9:2321-29
7. Moore SP, Erdile L, Kelly T, Fishel R. 1991. Proc. Natl. Acad. Sci. USA 88:9067-71
8. Mitsis PG, Kowalczykowski SC, Lehman IR. 1993. Biochemistry 32:5257-66
9. Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E. 1992. EMBO J. 11:769-76
10. Li R, Botchan MR. 1993. Cell 73:1207-21
11. Bonne-Andrea C, Santucci S, Clertant P, Tillier F. 1995. J. Virol. 69:2341-50
12. Matsunaga T, Park CH, Bessho T, Mu D, Sancar A. 1996. J. Biol. Chem. 271:11047-50
13. Fang F, Newport JW. 1993. J. Cell Sci. 106:983-94
14. Liu VF, Weaver DT. 1993. Mol. Cell. Biol. 13:7222-31
15. Gomes XV, Henricksen LA, Wold MS.1996. Biochemistry 15:5586-95
16. LJ Blackwell, JA Borowiec, and IA Masrangelo 1996. Mol. Cell. Biol. 16:4798-4807
17. Hongwu Niu, Hediye Erdjument-Bromage, Zhen-Qiang Pan, Suk-Hee Lee, Paul Tempst, and Jerard Hurwitz 1997. J. Biol. Chem 272:12634-41
18. Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K. 2001. Mol Biol Cell. 12:1199-213
19. Vitaly M. Vassin, Marc S. Wold, and James A. Borowiec 2004. Mol. Cell. Biol 24:1930-43
20. L.J. Blackwell, J.A. Borowiec, I.A. Mastrangelo, 1996. Mol. Cell. Biol. 16 4798–4807.
21 D.W. Chan, S.C. Son, W. Block, R.Q. Ye, K.K. Khanna, M.S.Wold, P. Douglas, A.A. Goodarzi, J. Pelley, Y. Taya, M.F. Lavin, S.P. Lees-Miller 2000 J. Biol. Chem. 275 7803–7810.
22. Y. Wang, J. Guan, H. Wang, D. Leeper, G. Iliakis, 2001. J. Biol. Chem. 276 20579–20588.
23. Maria Zernik-Kobak, Kersi Vasunia, Margery Connelly, Carl W. Anderson, and Kathleen Dixon J. Biol. Chem. 1997 272: 23896 – 23904
24 Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. 1994. Mol Cell Biol. 14:7414-20.
25. Chene P. 2003. Nat Rev Cancer. 3:102-9
26. Jin A, Itahana K, O'Keefe K, Zhang Y. 2004 Mol Cell Biol. 24:7669-80
27. Bhat KP, Itahana K, Jin A, Zhang Y. 2004 EMBO J. 23:2402-12.
28. Olaf Rosorius, Barbara Fries, Roland H. Stauber, Nicole Hirschmann, Dorian Bevec, and Joachim Hauber 2000 J. Biol. Chem. 275: 12061 – 12068
29. Oakley GG, Patrick SM, Yao J, Carty MP, Turchi JJ, Dixon K. 2003. Biochemistry 42:3255–3264
30. Natalia A. Abramova, Jackie Russell, Michael Botchan, and Rong Li 1997 Proc Natl Acad Sci U S A. 94:7186-91
31 Yoo E, Kim BU, Lee SY, Cho CH, Chung JH, Lee CH. 2005 Oncogene. Apr 18; [Epub ahead of print]
32. Aiwen Jin, Koji Itahana, Kevin O'Keefe, and Yanping Zhang 2004 Mol Cell Biol. 24:7669-80.
33. Mu-Shui Dai and Hua Lu 2004 J Biol Chem. 279:44475-82.
34. Krishna P Bhat, Koji Itahana, Aiwen Jin, Yanping Zhang 2004 EMBO J. 23:2402-12.
35. Mu-Shui Dai, Shelya X. Zeng, Yetao Jin, Xiao-Xin Sun, Larry David, and Hua Lu. 2004 Mol Cell Biol. 24:7654-68
36. Yanping Zhang, Gabrielle White Wolf, Krishna Bhat, Aiwen Jin, Theresa Allio, William A. Burkhart, and Yue Xiong 2003 Mol Cell Biol. 23:8902-12.
37. Rosa Bernardi, Pier Paolo Scaglioni, Stephan Bergmann, Henning F. Horn, Karen H. Vousden, Pier Paolo Pandolfi 2004 Nat Cell Biol. 6:665-72
38. Paul H. Kussie, Svetlana Gorina, Vincent Marechal, Brian Elenbaas, Jacque Moreau, Arnold J. Levine, and Nikola P. Pavletich. 1996. Science. 274:948-53.
39. Katsutoshi Oda, Hirofumi Arakawa, Tomoaki Tanaka, Koichi Matsuda, Chizu Tanikawa, Toshiki Mori, Hiroyuki Nishimori, Katsuyuki Tamai, Takashi Tokino, Yusuke Nakamura, and Yoichi Taya .2000 Cell. 102:849-62.
40. Gabriella D'Orazi, Barbara Cecchinelli, Tiziana Bruno, Isabella Manni, Yuichiro Higashimoto, Shin'ichi Saito, Monica Gostissa, Sabrina Coen, Alessandra Marchetti, Giannino 2002 Nat Cell Biol. 4:11-9.
41. Thomas G. Hofmann, Andreas Möller, Hüseyin Sirma, Hanswalter Zentgraf, Yoichi Taya, Wulf Dröge, Hans Will, M. Lienhard Schmitz. 2002 Nat Cell Biol.4:1-10
42. Mayo LD, Rok Seo Y, Jackson MW, Smith ML, Rivera Guzman JR, Korgaonkar CK, Donner DB 2005 J Biol Chem. Apr 20
43. Charles J. Sherr 1998 Genes Dev. 12:2984–2991.
44. Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP. 2004 Nat Cell Biol. 6:665-72.
45. Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K. 2004 Nature.;432:640-5.
46. Park, et al., 1996 J. Biol. Chem. 271: 22111-16
47. Gomes, et al. 1996 Biochemistry 35: 5586-95
48. Philipova, et al., 1996. Genes Dev. 10: 2222-33
49.Pfuetzner, et al. 1997. J. Biol. Chem. 272: 430-4.
50. Gomes, et al., 1995. J. Biol. Chem. 270: 4534-43
51. Lin, et al., 1996. J. Biol. Chem. 271: 17190-98
52. Bochkarev, et al., 1999. EMBO J. 18: 4498-504
53. Henricksen, et al., 1994. J. Biol. Chem. 269: 1121-32
54. Adachi, et al, 1992. J. Cell Biol. 119: 1-15
55. Cardoso, et al., 1993. Cell 74: 979-92
56. Din, et al., 1990. Genes Dev. 4: 968-77
57. Henricksen, et al., 1996. Nucl. Acids Res. 24: 433-40