| 研究生: |
吳佩蓉 Wu, Pei-Jung |
|---|---|
| 論文名稱: |
基質剛性梯度下之NIH3T3纖維母細胞攤附與遷移一維動態模擬 One-dimensional Simulation of Spreading and Migration of NIH3T3 Fibroblast Cells on the Substrate with a Stiffness Gradient |
| 指導教授: |
朱銘祥
Ju, Ming-Shuang 林宙晴 Lin, Chou-Ching K. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 細胞移動 、細胞攤附 、數學模型 、基質剛性梯度 |
| 外文關鍵詞: | cell migration, cell spreading, mathematical model, substrate stiffness |
| 相關次數: | 點閱:231 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞遷移的特性在生理上與傷口癒合、白血球免疫反應、甚至於細胞癌化等都有密切的相關性,而細胞剛性則會影響細胞爬行的運動學特性。因此本研究目的為發展NIH3T3纖維母細胞於基質剛性梯度下之細胞攤附與遷移之一維動態模型,並利用生物力學觀點探討細胞在運動中可能的生理機制。
本研究目的為發展一細胞動態模型,並以系統觀點解釋其生理現象。其中細胞攤附模型整合細胞前伸、集中附著點產生及應力纖維三過程模擬單一細胞從懸浮到攤附的過程。細胞攤附模型中,細胞藉由極化判斷遷移方向,而細胞也會降解後端的集中附著點。基質剛性是影響細胞遷移的重要因素,故本研究提出一製作剛性梯度的方法,使細胞培養於此基質上能產生明顯的運動,並由其運動分析所得到的參數代入遷移模型中。透過模擬能得到細胞的動態行為,並由模擬結果可推測細胞在攤附前期的G-actin濃度會增加以加速攤附;在攤附後期G-actin濃度下降使細胞面積達到飽和。遷移模型部份則呈現細胞在較快運動、較慢運動及往回走的動態情形。由以上生物力學之分析,細胞可不經由生化分析而預測其中之分子性質並模擬出細胞運動的動態情形。
Cell migration plays an important role in the modulation of physiological functions such as wound healing, immunoresponse, and carcinogenesis. A substrate with a stiffness gradient affects the kinematics of cell migration. In this study, a one-dimensional cell spreading and migration model is proposed to investigate the cell motility in the environment of a stiffness gradient by biomechanical analysis.
A one-dimensional cell dynamics model on the substrate with a stiffness gradient is developed in this study, and the physiology is interpreted from system point of view.In the cell spreading model, cell protrusion, focal adhesion formation, and stress fiber formation are integrated to simulate the dynamics from suspension to spreading. In the cell migration model, the movement direction of the modeled cell is determined by polarization, and focal adhesions at the cell rear are degraded. A method for fabricating a substrate with a stiffness gradient is proposed. The parameters obtained from kinematic analysis are substituted into the migration model. Cell dynamics are obtained from simulation, and the G-actin concentration is estimated. The G-actin concentration increases in the early stage of spreading, and then decreases when spreading came to saturate. The simulation results of cell migration shows the dynamics when the cell moved fast, slow, and turned back. The behaviors of cell motility are described by biomechanical analysis, and the molecular properties can be predicted without a biochemical assay.
[1]Chicurel M., Cell biology: cell migration research is on the move. Science 295, 606–609 (2002)
[2]Alberts B., Bray D., Hopkin D., Johnson A., Lewis J., et al., Essential Cell Biology, Second Edition, Garland Science Publishing (2004)
[3]賴慕賢,張乃忠, 生化學與分子生物學:原理與實用,合記圖書出版社,175-186(2006)
[4]陳宣毅,細胞爬行物理學,物理雙月刊第二十九卷,1029-1033(2007)
[5]Lodish H., Berk A., Zipursky L., Matsudaira P., Baltimore D., et al. , Molecular Cell Biology, W. H. Freeman and Company(2008)
[6]Geiger B., Bershadsky A., Pankov R., and Yamada K. M., Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793-805(2001).
[7]Giancotti F.G., Ruoslahti, E., Integrin signaling. Science 285: 1028–1032(1999)
[8]Geiger B., Bershadsky A., Pankov R. et al., Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol., 2(11), 793~805(2001)
[9]Geiger B., Bershadsky A., Exploring the neighborhood: Adhesion-coupled cell mechanosensors. Cell 110(2), 139–142( 2002)
[10]Sastry S.K., Burridge K., Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 261, pp. 25–36. (2000)
[11]Pollard T.D., Borisy G.G., Cellular motility driven by assembly and disassembly of actin filaments.Cell 112, 453–465 (2003)
[12]Hill T.L., Kirschner M.W., Bioenergetics and kinetics of microtubule and actin filament assemblydisassembly.Int. Rev. Cytol. 78, 1–125 (1982)
[13]Wegner A., Head to tail polymerization of actin. J. Mol. Biol. 108, 139–150 (1976)
[14]Pollard T.D., Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986)
[15]Mogilner A., Mathematics of cell motility: have we got its number? J. Math. Biol. 58:105–134 (2009)
[16]Zhu C., Skalak R., A continuum model of protrusion of pseudopod in leukocytes. Biophys.J. 54, 1115–1137 (1988)
[17]Bell G.I., Models for the specific adhesion of cells to cells.Science 200, 618–627(1978)
[18]Dembo M., Torney D.C., Saxman K., Hammer D.A., The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. London Ser. B 234:55-83(1988)
[19]Schwarz U.S., Erdmann T., and Bischofs I. B., Focal adhesions as mechanosensors: the two-spring model. BioSystems, 83: 225-232 (2006)
[20]Zhu C., Kinetics and mechanics of cell adhesion. J. Biomech. 33:23-33(2000)
[21]Stéphanou A., Mylona E., Chaplain M., Tracqui P., A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol, 253:701–716(2008)
[22]Dokukina I.V., Gracheva M.E., A Model of Fibroblast Motility on Substrates with Different Rigidities. Biophys.J. 98, 2794-2803(2010)
[23]Lo C.M., Wang H.B., Dembo M.,Wang, Y.L., Cell movement is guided by the rigidity of the substrate, Biophys. J. 79, 144–152(2000)
[24]Ponti A., Machacek M., Gupton SL, Waterman-Storer C.M.,Danuser G., Two distinct actin networks drive the protrusion of migrating cells, Science, 305:1782-1786( 2004)
[25]Ridley A.J., Schwartz M.A., Burridge K., Parsons J.T., Firtel R.A., et al., Cell Migration: Integrating Signals from Front to Back. Science 302, 1704–1709(2003)
[26]Kong D., Ji B., Dai L., Stabilizing to disruptive transition of focal adhesion response to mechanical forces , Journal of Biomechanics 43, 2524(2010)
[27]Peskin C.S., Odell G.M., Oster G.F., Cellular motions andthermal fluctuations: the Brownian ratchet, Biophys J. 65,316-324 (1993)
[28]Alt W., & Dembo M., Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156, 207–228 (1999)
[29]Hotulainen P., Lappalainen P., Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol.173,383–394(2006)
[30]Gillespie D., Exact stochastic simulation of coupled chemical reactions, J Phys. Chem. 81, 2340-2361(1977)
[31]Ohan M.P., Weadock K.S., Dunn M.G., Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J Biomed Mater Res 60(3), 384–91. (2002)