簡易檢索 / 詳目顯示

研究生: 王正裕
Wang, Cheng-Yu
論文名稱: 穿透式電子顯微術與電子能量損失光譜術分析奈米結構成長與價帶電子激發
Study of in-situ nanostructures growth and valence excitations by transmission electron microscopy and electron energy loss spectroscopy
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 奈米顆粒熱穩定性奈米反應腔奈米管奈米結構奈米線多層次結構成長奈米碳管氧化鋅摻雜氧化鋅繞射對比相對比能量損失光譜電鏡數位影像處理
外文關鍵詞: nanoparticle, thermal stability, nanometer cell, nanostructure, nanowire, hierarchical, growth, carbon nanotube (CNT), zinc oxide (ZnO), doped ZnO, diffraction contrast, phase contrast, electron energy loss spectroscopy, TEM digital image processing
相關次數: 點閱:146下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   臨場電鏡實驗分析限制於碳管內的單晶金屬顆粒的熔點變化,因管徑屬於奈米級,所以熔點異於相圖中塊材參考值。實驗直接加熱並觀察顆粒形態與繞射對比的變化,分析熔點的變化。臨場電鏡直接觀察碳管的成長與在成長過程中催化劑形態的連續變化。在氣-液-固三相成長中催化劑平衡張力變化是明顯的指標,實驗分析其角度的連續變化。竹節結構常發生於碳管中,在成長過程中亦能了解其成長機制,進一步控制竹節結構的成長。同樣在臨場電鏡裡,在碳膜上與氨氣的氣氛下利用鎵鈷鎳合金顆粒催化成長碳奈米球。同時分析催化劑的合金化行與合金顆粒的催化能力。電子能量損失光譜記錄鋁元素核心殼層的電子躍遷,可以分析鋁的濃度,配合掃描穿透式電子顯微術則能提供奈米解析度鋁元素的空間分佈。在低能量損失範圍內,能量光譜可定出組成元素的的能階躍遷外,亦能分析關連材料光學性質的體電漿分佈與能隙的躍遷。摻雜可以引致不同氧化鋅層次結構,實驗利用電子顯微鏡術與元素成像分析形態、結晶結構、成長方向、元素空間分佈,討論成長機制。最後利用能量損失光譜分析體電漿光譜與價帶能量激發。實驗利用環形暗場像分析金屬顆粒-碳奈米管複合結構,金屬顆粒的形態與分佈密度與管束直徑、金屬-碳層間反應性關連。此一複合結構電漿能量峰值由碳管、金屬顆與兩者的耦合貢獻。利用類似 geometrical phase method 的影像處理方式可以將異質介面的缺陷實際在實空間分佈呈現

    In situ TEM analyzes single-crystal metal nanocrystals constrained inside the carbon nanotube that is of nanometer scale, in which the melting temperature of nanocrystals differentiate from the bulk. Direct observation of diffraction contrast and morphology during ramping temperature in TEM provide experimental evidence of change of melting temperature. Dynamical observation of carbon nanotube growth and evolution of catalyst is performed on in situ TEM, especially focusing on equilibrium tension change of catalyst at the vapor-liquid-solid interface. The growth mechanism of bamboo structures that is often encountered in CNTs are also observed as well, which in turn helps controlling these in synthesizing CNTs. With the same in situ TEM, gallium, nickel and cobalt alloy particles catalyze graphitic nano-capsules on amorphous carbon film with NH3 atmosphere. Simultaneously, alloying behavior and catalytical power of alloys are assessed. EELS recording excitations from core shell is capable of dopant concentration. Integrated into STEM, this technique can provide spatial distribution of nanometer scale. In low loss region, interband transitions as well as bulk plasmon, which associates with optical properties can be identified. Dopants induce growing hierarchical ZnO nanostructures. TEM and elemental mapping are employed to exploit morphology, crystal structure, growth directions and spatial distribution of dopants, and results help indicating the growth mechanism. EELS is employed to probe plasmon and valence excitations of the hierarchical structures. Annular dark field (ADF) with STEM is employed to examine the morphology of Au- and Pt-coated CNT bundles together with Ag-anchored CNT prepared by physical vapor deposition. Meanwhile, EELS is also employed to probe valence excitations of the hybrid, revealing that both bulk plasmon, π plasmon and π+σ surface plasmon of CNT and to analyze the excitation of surface plasmon coupling. Finally, Employing the geometrical-phase-like method can directly map distortion in the heterogeneous system.

    中文摘要.................................................................................................................................................................V ABSTRACT..........................................................................................................................................................VI 1. 緒論..................................................................................................................................................................1 1.1. 前言...........................................................................................................................................................1 1.2. 研究動機與目的......................................................................................................................................2 1.3. 論文架構...................................................................................................................................................4 2. 理論基礎與文獻回顧...................................................................................................................................5 2.1. 奈米結構與量子效應...............................................................................................................................5 2.2. 奈米金屬顆粒..........................................................................................................................................6 2.3. 奈米碳管...................................................................................................................................................7 2.4. 金屬奈米顆粒-奈米碳管異質複合結構............................................................................................. 14 2.5. 氧化鋅奈米結構與N-型摻雜................................................................................................................ 17 2.6. 穿透式電子顯微技術............................................................................................................................ 19 2.7. 電子能量損失光譜技術........................................................................................................................ 23 2.8. 高解析電鏡影像的處理........................................................................................................................ 26 3. 實驗方法與步驟......................................................................................................................................... 27 3.1. 奈米結構的成長系統............................................................................................................................ 27 3.1.1. 奈米碳管....................................................................................................................................... 27 3.1.2. 奈米碳球....................................................................................................................................... 27 3.1.3. 摻雜鋁氧化鋅奈米線.................................................................................................................... 28 3.1.4. 具摻雜的層次氧化鋅奈米結構................................................................................................... 29 3.1.5. 金屬顆粒-奈米碳管異質複合結構............................................................................................. 29 3.2. 微結構、能量損失光譜與臨場偵測................................................................................................... 30 3.2.1. 空間高解析穿透式電子顯微鏡................................................................................................... 30 3.2.2. 能量高解析掃描穿透式電子顯微鏡........................................................................................... 30 3.2.3. 臨場偵測的穿透式電子顯微鏡................................................................................................... 32 3.2.4. 高解析電鏡影像與穿透式電子顯微鏡能量損失光譜處理..................................................... 33 4. 結果與討論.................................................................................................................................................. 37 4.1. 奈米金屬顆粒的熱穩定........................................................................................................................ 37 4.2. 一維奈米碳管的成長............................................................................................................................ 43 4.3. 零維奈米碳球的成長............................................................................................................................ 47 4.4. 摻雜鋁的氧化鋅奈米線........................................................................................................................ 54 4.5. 具摻雜的多層次氧化鋅奈米結構....................................................................................................... 61 4.6. 金屬奈米顆粒-奈米碳管異質複合結構............................................................................................. 70 4.7. 高分辨電鏡影像處理............................................................................................................................ 76 5. 總結............................................................................................................................................................... 79 5.1. 結論........................................................................................................................................................ 79 5.2. 未來研究方向....................................................................................................................................... 81 參考文獻............................................................................................................................................................... 82 感謝與自述.......................................................................................................................................................... 93 著作........................................................................................................................................................................ 94 索引........................................................................................................................................................................ 96

    [1] White Paper," Photonic Integrated Circuits-a technology and applications primer", Infinera
    [2] K. Osamura, S. Naka and Y. Murakami," Preparation and optical properties of Ga1-xInxN thin films", J. Appl. Phys. 46, 3432 (1975).
    [3] H. A. Atwater and A. Polman," Plasmonics for improved photovoltaic devices", Nature Mater. 9, 205-213 (2010).
    [4] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil," Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices", Nano Lett. 7, 1793-1798 (2007).
    [5] D. B. Williams and C. B. Carter," Transmission Electron Microscopy-a text book for materials science", Plenum Press, 1996.
    [6] 陳力俊,"材料電子顯微鏡學", 科儀叢書3
    [7] R. E. Dunin-Borkowski, M. R. McCartney and D. J. Smith," Electron holography of nanostructured materials", Encycl. Nanosci. Nanotechnol. 3, 41-99 (2004).
    [8] P. A. Midgley and M. Weyland," 3D electron microscopy in the physical science: the development of Z-contrast and EFTEM tomography", Ultramicroscopy 96, 413-431 (2003).
    [9] P. A. Midgley, M. Weyland, T. J. V. Yates, I. Arslan, R. E. Dunin-Borkowski and J. M. Thomas," Nanoscale scanning transmission electron microscopy", J. Microsc. 223, 185-190 (2006).
    [10] K. W. Urban," Studying atomic structures by aberration-corrected transmission electron microscopy", Science 321, 506-510 (2008).
    [11] H. Cohen, T. Maniv, R. Tenne, Y. R. Hacohen, O. Stephan and C. Colliex," Near-field electron energy loss spectroscopy of nanoparticles", Phy. Rev. Lett. 80, 782-785 (1999).
    [12] V. J. Keast and M. Bossman," New developments in electron energy loss spectroscopy", Microsc. Res. Tech. 70, 211-219 (2007).
    [13] M. R. McCartney and D. J. Smith," Electron holography: phase imaging with nanometer resolution", Annu. Rev. Mater. Res. 37, 729-767 (20009).
    [14] A. I. Kirkland and R. R. Meyer," Indirect high-resolution transmission electron microscopy: aberration measurement and wave function reconstruction", Microsc. Microanal. 10 401-413 (2004).
    [15] L. J. Allen, W. McBride, N. L. O’Leary and M. P. Oxley," Exit wave reconstruction at atomic resolution", Ultramicroscopy 100, 91-104 (2004).
    [16] T. F. Kelly, D. J. Larson, K. Thompson, R. L. Alvis, J. H. Bunton, J. D. Olson and B. P. Gorman," Atom probe tomography of electronic materials", Annu. Rev. Mater. Res. 37, 681-727 (2007).
    [17] P. Harrison," Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures", 3rd ed. 2009, John Wiley and Sons Ltd.
    [18] S. Riikonen, I. Romero, and F. J. G. de Abajo," Plasmon tenability in metallodielectric metamaterials", Phy. Rev. B 71, 235104-1~235104-6 (2005).
    [19] E. Prodan and P. Nordlander," Plasmon hybridization in spherical nanoparticles", J. Chem. Phys. 120, 5444-5454 (2004).
    [20] E. Prodan, C. Radloff, N. J. Halas and P. Nordlander," A hybridization model for the plasmon response of complex nanostructures", Science 302, 419-422 (2003).
    [21] F. J. G. de Abajo and M. Kociak," Probing the photonic local density of states with electron energy loss spectroscopy", Phy. Rev. Lett. 100, 106804-1~106804-4 (2008).
    [22] M. Notomi," Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap", Phy. Rev. B 62, 10696-10705 (2000).
    [23] W. L. Barnes, A. Dereux and T. W. Ebbesen," Surface plasmon subwavelength", Nature 824-830 (2003).
    [24] P. Bharadwaj, B. Deutsch and L. Novotny," Optical antenna", Adv. Opt. Phot. 1, 438-483 (2009).
    [25] T. Nagao, S. Yaginuma, T. Inaoka and T. Sakurai," One-dimensional plasmon in an atomic-scale metal wire", Phy. Rev. Lett. 97, 116802-1~116802-4 (2006)
    [26] J. Nelayah, M. Kociak, O. Stephan, F. J. G. de Abajo, M. Tence, L. Henrard, D. Taverna and I. Pastoriza-Santos," Mapping surface plasmons on a single metallic nanoparticle", Nature Phys. 3, 348-353 (2007).
    [27] W. A. Murray and W. L. Barness," Plasmonic materiasl", Adv. Mater. 19, 3771-3782 (2007).
    [28] H. Ko, S. Singamaneni and V. V. Tsukruk," Nanostructured surfaces and assemblies as SERS media", Small 4, 1576-1599 (2008).
    [29] F. Ercolessi, W. Andreoni and E. Tosatti," Melting of small gold particles: mechanisms and size effect", Phy. Rev. Lett. 66, 911-914 (1991).
    [30] Lumerical, commercial package, http://www.lumerical.com/
    [31] M. J. Collinge and B. T. Draine," Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry", J. Opt. Soc. Am. A 21, 2023-2028 (2004).
    [32] B. T. Draine and P. J. Flatau," Discrete-dipole approximation for periodic targets: theory and tests", J. Opt. Soc. Am. A 25, 2693-2703 (2008).
    [33] B. T. Draine and P. J. Flatau," User guide for the discrete-dipole approximation code DDSCAT7.0", http://arxiv.org/abs/0809.0337v5
    [34] J. B. Pendry," Negative refraction makes a perfect lens", Phy. Rev. Lett. 85, 3966-3969 (2000).
    [35] D. A. Porter and K. E. Eastering," Phase transformation in metals and alloys", 2nd ed, CRC Press, 2004.
    [36] S. Iijima," Helical microtubules of graphitic carbon", Nature 354, 56-58 (1991).
    [37] R. Saito, G. Dresselhaus, and M. S. Dresselhaus," Physical properties of carbon nanotubes", Imperial College Press, 1998.
    [38] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. A. Nagahara," Atomic resolution imaging of a carbon nanotube from diffraction intensities", Science 300, 1419-1421 (2003).
    [39] L. C. Qin," Electron diffraction from carbon nanotubes", Rep. Prog. Phys. 69, 2761-2821 (2006).
    [40] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker," Electronic structures of atomically resolved carbon nanotube", Nature 391, 59-62 (1998).
    [41] T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber," Atomic structure and electronic properties of single-walled carbon nanotubes", Nature 391, 62-64 (1998).
    [42] W. A. de Heer, A. Chatelain,and D. Ugarte," Carbon nanotube field emission", Science 270, 1179-1180 (1995). S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai," Self-orientated regular arrays of carbon nanotubes and their field emission properties", Science 283, 512-514 (1999).
    [43] J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho and K.-S. Nam," Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotubes field emitter arrays", Appl. Phys. Lett. 78, 901-903 (2001).
    [44] M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota," Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition", Appl. Phys. Lett. 67, 2477-2479 (1995).
    [45] C. T. White and T. N. Todorov," Carbon nanotubes as long ballistic conductors", Nature 393, 240-242 (1998).
    [46] C. Bower, W. Zhu, S. Jin and O. Zhou," Plasma-induced alignment of carbon nanotubes", Appl. Phys. Lett. 77, 830-832 (2000).
    [47] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgstrom, K. Deppert and L. Samuelson," Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires", Adv. Mater. 21, 153-165 (2009).
    [48] L. P. Biro, G. Molnar, I. Szabo, Z. Vertesy, Z. E. Horvath, J. Gyulai, Z. Konya, P. Piedigrosso, A. Fonseca, J. B. Nagy and P. A. Thiry," Selective nucleation and growth of carbon nanotubes at the CoSi2/si interface", Appl. Phys. Lett. 76, 706-708 (2000).
    [49] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura and S. Iijima," Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes", Science 306, 1362-1364 (2004).
    [50] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen and J. K. Norskow," Atomic-scale imaging of carbon nanofibre growth", Nature 427, 426-429 (2004).
    [51] T. Ichihashi, J.-I. Fujita, M. Ishida and Y. Ochiai," In situ observation of carbon nanopillar tubulization caused by liquidlike iron particle", Phy. Rev. Lett. 92, 215702-1~215702-4 (2004).
    [52] Ph. Avouris, Z. Chen and v. Perebeinos," Carbon-based electronic", Nature Nanotechnol. 2, 605-615 (2007).
    [53] Ph. Avouris, M. Freitag and V. Perebeinos," Carbon-nanotube photonics and optoelectronics", Nature Nanotechnol. 2, 341-350 (2008).
    [54] R. B. Weisman and S. M. Bachilo," Dependence of optical transition energies on structure fro single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot", Nano Lett. 3, 1235-1238 (2003).
    [55] K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara and S. Iijima," One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes", Phy. Rev. Lett. 85, 5384-5387 (2000).
    [56] J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green," Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes", Chem. Commun. 2002, 1319-1332 (2002).
    [57] R. L. D. Whitby, W. K. Hsu, C. B. Boothroyd, P. K. Fearon, H. W. Kroto and D. R. M. Walton," Binary phase of layered nanotubes", Chem. Phys. Lett. 359, 121-126 (2002).
    [58] C. Desvaux, C. Amiens, P. Fejes, P. Renaud, M. Respaud, P. Lecante, E. Snoeck and B. Chaudret," Multimilimeter-large superlattice of air-stable iron-cobalt nanoparticles", Nature Mater. 4, 750-753 (2005).
    [59] W. S. Seo, J. H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P. C. Yang, M. V. McConnell, D. G. Nishimura and H. Dai," FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents", Nature Mater. 5, 971-976 (2006).
    [60] A. Guerrero-Martinez, J. Perez-Juste and L. M. Liz-Marzan," Recent progress on silica coating of nanoparticles and related nanomaterials", Adv. Mater. 22, 1182-1195 (2010).
    [61] Y. Zhao and L. Jiang," Hollow micro/nano-materials with multilevel interior structures", Adv. Mater. 21, 1-18 (2009).
    [62] Z. W. Pan, Z. R. Dai and Z. L. Wang," Nanobelts of semiconducting oxides", Science 291, 1947-1949 (2001).
    [63] Z. L. Wang, X. Y. Kong and J. M. Zuo," Induced growth of asymmetric nanocantilever arrays on polar surface", Phy. Rev. Lett. 91, 185502-1~185502-4 (2003).
    [64] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, " Room-temperature ultraviolet nanowire nanolaser", Science 292, 1897-1899 (2001).
    [65] Z. L. Wang and J. Song," Piezoelectric nanogenerator based on zinc oxide nanowire arrays", Science 312, 242-246 (2006).
    [66] S. B. Zhang, S.-H. Wei and A. Zunger," Intrinsic n-type versus p-type asymmetry and the defect physics of ZnO", Phy. Rev. B 63, 075205-1~075205-7 (2001).
    [67] A. Janotti and C. G. van de Walle," Native point defects in ZnO", Phy. Rev. B 76, 165202-1~165202-22 (2007).
    [68] C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang and D. Schwen," Manganese-doped ZnO nanobelts for spintronics", Appl. Phys. Lett. 84, 783-785 (2004).
    [69] K. R. Kittilstved, J. Zhao, W. K. Liu, J. D. Bryan, D. A. Schwartz and D. R. Gamelin," Magnetic circular dichroism for ferromagnetic Co2+-doped ZnO", Appl. Phys. Lett. 89, 062510-1~062510-3 (2006).
    [70] B. D. Yuhas, S. Fakra, M. A. Marcus and P. Yang," Probing the local coordination environment for transition metal dopants in zinc oxide nanowires", Nano Lett. 7, 905-909 (2007).
    [71] G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T. C. Sum, C. H. A. Huan and T. Wu," Comparative study of room-temperature ferromagnetism in Cu-doped ZnO nanowires enhanced by structural inhomogeneity", Adv. Mater. 20, 3521-3527 (2008).
    [72] B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D, Yu and D. Wang," Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition" Nano Lett. 7, 323-328 (2007).
    [73] G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee," p-type ZnO nanowire arrays", Nano Lett. 8, 2591-2597 (2008).
    [74] G.-D. Yuan, W.-J. Zhang, J.-S. Jie, X. Fan, J.-X. Tang, I. Shafiq, Z.-Z. Ye, C.-S. Lee and S.-T. Lee," Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays", Adv. Mater. 20, 168-173 (2008).
    [75] S. Y. Bae, C. W. Na, J. H. Kang and J. Park," Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation", J. Phys. Chem. B 109, 2526-2531 (2005).
    [76] I. Shalish, H. Temkin and V. Narayanamurti," Size-dependent surface luminescence in ZnO nanowire", Phy. Rev. B 69, 245401-1~245401-4 (2004).
    [77] E. J. Kirkland," Advanced Computing in Electron Microscopy", Plenum Press, 1998.
    [78] K. Watanabe, T. Yamazaki, Y. Kikuchi, Y. Kotaka, M. Kawasaki, I. Hashimoto and M. Shiojiri," Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011)", Phy. Rev. B 63, 085316-1~085316-5 (2001).
    [79] M. Shiojiri," 先進STEM之原子級解析度技術研習", 行政院國家科學委員會精密儀中心, 92年9月.
    [80] J. J. Sakura," Modern Quantum Mechanics", revised ed., Addison-Wesley Longman, 2005
    [81] Gatan Inc. ," EELS Imaging & Analysis School", Pleasanton, 2001.
    [82] R. F. Egerton," Electron energy loss spectroscopy-in the electron microscope", 2nd ed., Plenum Press.
    [83] W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo and J. M. Zuo," Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction", Nature Mater. 7, 308-313 (2008).
    [84] W. J. Huang, B. Jiang, R. S. Sun and J. M. Zuo," Towards sub-Å atomic resolution electron diffraction imaging of metallic nanostructures: a simulation study of experimental parameters and reconstruction algorithms", Ultramicroscopy 107, 1159-1170 (2007).
    [85] A. K. Jain," Fundamentals of digital image processing", Prentice-Hall International Ed. Inc. 1989.
    [86] R. C. Gonzalez and R. E. Woods," Digital Image Processing", 3rd ed., Prentice Hall, 2007.
    [87] A. Rosenauer, S. Reisinger, J. Zweck and W. Gebhardt," Digital analysis of high resolution transmission electron microscopy lattice images", Optik 102, 63-69 (1996).
    [88] R. C. Puetter, T. R. Gosnell and A. Yahil," Digital image reconstruction: deblurring and denoising", Annu. Rev. Astron. Astrophys. 43, 139-194 (2005).
    [89] M. J. Hytch, E. Snoeck and R. Kilaas," Quantitative measurement of displacement and strain fields from HREM micrographs", Ultramicroscopy 74, 131-146 (1998).
    [90] W. Coene, G. Janssen, M. O. de Beeck and D. van Dyck," Phase retrieval through focus variations for ultra-resolution in field-emission transmission electron microscopy", Phy. Rev. Lett. 69, 3743-3746 (1992).
    [91] H. F. Fan," Direct methods in electron crystallography: image processing and solving incommensurate structures", Microsc. Res. Tech. 46, 104-116 (1999).
    [92] W. Sinkler, E. Bengu and L. D. Marks," Application of direct methods to dynamical electron diffraction data for solving bulk crystal structures", Acta Cryst. A 54, 591-605 (1998).
    [93] M. R. Teague," Deterministic phase retrieval: a Green’s function solution", J. Opt. Soc. Am. 73, 1434-1441 (1983).
    [94] T. C. Petersen, V. J. Keast and D. M. Paganin," Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation", Ultramicroscopy 108, 805-815 (2008).
    [95] J. H. Yen, I. C. Leu, C. C. Lin and M. H. Hon," Synthesis of well-aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition", Appl. Phys. A 80, 415-421 (2005).
    [96] G. A. Botton, C. B. Boothroyd and W. M. Stobbs," Momentum dependent energy loss near edge structures using a CTEM: the reliability of the methods available", Ultramicroscopy 59, 93-107 (1995).
    [97] IMRE, Merlion system, http://www.imre.a-star.edu.sg/rnd/Faci_Equip.asp
    [98] Gatan Inc.," DigitalMicrograph User’s Guide", Gatan Inc. 1999.
    [99] L. Sun, F. Banhart, A. V. Krasheninnikov, J. A. Rodriguez-Manzo, M. Terrones and P. M. Ajayan," Carbon nanotubes as high-pressure cylinder and nanoextruders", Science 312, 1199-1202 (2006)
    [100] Q. Jiang, N. Aya and F. G. Shi," Nanotube size-dependent melting of single crystals in carbon nanotube", Appl. Phys. A 64, 627-629 (1997).
    [101] J. Haglund, A. F. Guillermet, G. Grimvall, and M. Korling," Theory of bonding in transition-metal carbides and nitrides", Phy. Rev. B 48, 11685-11691 (1993). JCPDS No.88-2326.
    [102] H. Baker (editor)," Alloys phase diagrams", ASM Handbook, vol. 3.
    [103] M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok and Y.-L. Foo," Direct observation of single-walled carbon nanotube growth at the atomic scale", Nano Lett. 6, 449-452 (2006).
    [104] S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A. C. Ferrari, R. Dunin-Borkoowki, S. Lizzit, L. Petaccia, A. Goldoni and J. Robertson," In situ observation of catalyst dynamics during surface-bound carbon nanotube nucleation", Nano Lett. 7, 602-608 (2007).
    [105] M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok and Y.-L. Foo," Dynamical observation of bamboo-like carbon nanotube growth", Nano Lett. 7, 2234-2238 (2007).
    [106] D. Ugarte," Onion-like graphitic particles", Carbon 33, 989-993 (1995).
    [107] S. Seraphin, D. Zhou and J. Jian," Filling the carbon nanocages", J. Appl. Phys. 80, 2097-2104 (1996).
    [108] F. Banhart, J.-C. Charlier, P.M. Ajayan," Dynamic behavior of nickel atoms in graphitic networks", Phy. Rev. Lett. 84, 686-689 (2000).
    [109] G. Lulli, A. Parisini and G. Mattei," Influence of electron-beam parameters on the radiation-induced formation of graphitic onions", Ultramicroscopy 60, 187-194 (1995).
    [110] H. Sawada, R. Wang and A. W. Sleight, " An electron density residual study of zinc oxide", J. Solid State Chem. 122, 148-150 (1996). JCPDS No. 890510.
    [111] R. Dorn, H. Luth and M. Buchel," Electronic surface and bulk transition on clean ZnO surfaces studied by electron energy-loss spectroscopy", Phy. Rev. B 16, 4675-4683 (1977).
    [112] J. Wang, X. An, Q. Li and R. F. Egerton," Size-dependent electronic structures of ZnO nanowires", Appl. Phys. Lett. 86, 201911-1~201911-3 (2005).
    [113] R. H. French, H. Mullejans and D. J. Jones," Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies", J. Am. Ceram. Soc. 81, 2549-2557 (1998).
    [114] D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees and L. J. Lauhon," Direct measurement of dopant distribution in an individual vapor-liquid-solid nanowire", Nature Nanotechnol. 4, 315-319 (2009).
    [115] S. Lany and A. Zunger," Dopability, intrinsic conductivity and non-stoichiometry of transparent conducting oxides", Phy. Rev. Lett. 98, 045501-1~045501-4 (2007).
    [116] G. M. Dalpian and J. R. Chelikowsky," Self-purification in semiconductor nanocrystals", Phy. Rev. Lett. 96, 226802-1~226902-4 (2006).
    [117] D. J. Norris, A. L. Efros and S. C. Erwin," Doped nanocrystals", Science 319, 1776-1779 (2008).
    [118] T.-L. Chan, M. L. Tiago, E. Kaxiras and J. R. Chelikowsky," Size limits on doping phosphorus into silicon nanocrystals", Nano Lett. 8, 596-600 (2008).
    [119] B. Rafferty and L. M. Brown," Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy", Phy. Rev. B 58, 10326-10337 (1998).
    [120] K. Iakoubovskii, K. Mitsuishi, Y. Nanakyama and K. Furuya," Thickness measurements with Electron Energy Loss Spectroscopy", Microsc. Res. Tech. 71, 626-631 (2008).
    [121] Chien-Lin Kuo, Ruey-Chi Wang, Chuan-Pu Liu and Jow-Lay Huang," Composition fluctuation induced growth of Al:ZnO rectangular nanorod arrays", Nanotechnology 19, 035605-1~035605-5 (2008).
    [122] H.J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. Gosele and M. Zacharias," Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping", Nanotechnology 17, S231–S239 (2006).
    [123] Y. Zhang and H. Dai," Formation of metal nanowires on suspended single-walled carbon nanotubes", Appl. Phys. Lett. 77, 3015-3017 (2000).
    [124] J. Zhong and G. M. Stocks," Morphological evolution of metal nanoparticles on surface of carbon nanotubes", Appl. Phys. Lett. 87, 133105-1~133105-3 (2005).
    [125] B. W. Reed and M. Sarikaya," Electronic properties of carbon nanotubes by transmission electron energy-loss spectroscopy", Phy. Rev. B 64, 195404-1~195404-13 (2001).
    [126] M. Kociak, L. Henrard, O. Stephan, K. Suenaga and C. Colliex," Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy", Phy. Rev. B 61, 13926-13944 (2000).
    [127] O. Stephan, D. Taverna, M. Kociak, K. Suenaga, L. Henrard and C. Colliex," Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: from multiwalled to single-walled nanotubes", Phy. Rev. B 66, 155422-1~155422-6 (2002).
    [128] T. Stockli, J.-M. Bonard, A. Chatelain and Z. L. Wang," Valence excitations in individual single-wall carbon nanotubes", Appl. Phys. Lett. 80, 2982-2984 (2002).

    下載圖示 校內:2015-07-20公開
    校外:2015-07-20公開
    QR CODE