| 研究生: |
羅本超 Lau, Ben-Chao |
|---|---|
| 論文名稱: |
包覆銀奈米粒子陣列之多孔性陽極氧化鋁及其光致導電率增強效應 Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles |
| 指導教授: |
曾永華
Tzeng, Yonhua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 電化學沈積 、陽極氧化鋁薄膜 、奈米銀粒子陣列 、吸收光譜 、區域表面電漿共振 、光致導電率 |
| 外文關鍵詞: | Electrodeposition, anodization, Ag nanoparticles arrays, absorption spectrum, localized surface plasmon resonance, photo-induced conductivity |
| 相關次數: | 點閱:114 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用電化學沈積的方法在多孔性陽極氧化鋁薄膜內成長出奈米銀粒子陣列。為了確保奈米銀粒子能夠均勻在多孔性薄膜的每個孔洞之內都能成核,在選擇電化學沈積的電壓源時,我們選擇了直流電以及交流電二種電壓源來做電解沈積,結果顯示使用直流電壓源可以提高銀粒子的成核均勻性。
成長出包覆有奈米銀粒子陣列的陽極氧化鋁薄膜後,我們量測此薄膜的吸收頻譜,發現此薄膜在波長405 nm處有一吸收峰值,原因來自於奈米銀粒子的局域性表面電漿共振。之後,我們使用黃光微影製程在此薄膜上製備出電極,以量測光致導電率增強效應。我們架設了一個含有633 nm、532 nm以及405 nm波長雷射的光學系統來進行量測,結果顯示在405 nm波長雷射光照射的情況之下,導電率的增強效應最為明顯。在三道雷射光照射情況下導電率提昇的比例也和吸收頻譜裡的吸收率有正比關係,顯示此導電率增強效應和局域性表面電漿共振有密切的關連。
Dielectric films embedded with two-dimensional (2D) arrays of silver nanoparticles have been fabricated by electrodeposition of Ag into nanopores of anodic aluminum oxide (AAO) films. In this case, the filling ratio of Ag nanoparticles into nanopores of AAO films is a major concern. Alternating current voltage source and Direct current voltage source are used as electrodepositing sources to determine the best filling ratio. Results show that alternating current voltage source has got better filling ratio than direct current voltage source.
The absorption spectrum of Ag nanoparticles embedded in the anodic aluminum oxide film (Ag/AAO) shows that the characteristic plasmon resonance peak is located at 405 nm which is considered to be caused by localized surface plasmon resonance (LSPR) of Ag nanoparticles.
Two metal contacts are fabricated for the conductivity measurements of the Ag/AAO film. The optical system consisting of 633-, 532- and 405-nm lasers is set for the photo-induced conductivity measurement. Conductivity measurements under 405-nm laser illumination have got the highest conductivity compared to the conductivity under other laser illuminations and the dark condition. The ratio of the induced conductivity for 633-, 532- and 405-nm laser illuminations is directly proportional to the ratio of the structural absorption at these three wavelengths, which confirms that the localized plasmon resonance of Ag nanoparticles are closely related to the photo-induced conductivity on the Ag/AAO substrate.
1. Q. F. Xu and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt Express 15, 924-929 (2007).
2. T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, "Photonic logic NORgate based on two symmetric microring resonators," Opt. Lett. 29, 2779-2781 (2004).
3. R. Chan, M. Feng, N. Holonyak, and G. Walter, "Microwave operation and modulation of a transistor laser," Appl Phys Lett 86, - (2005).
4. F. Hache, D. Ricard, and C. Flytzanis, "Optical Nonlinearities of Small Metal Particles - Surface-Mediated Resonance and Quantum Size Effects," J Opt Soc Am B 3, 1647-1655 (1986).
5. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, "Picosecond Nonlinear Optical-Response of a Cu-Silica Nanocluster Composite," Optics Letters 18, 373-375 (1993).
6. C. Bohren and D. Huffman., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
7. D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl Phys Lett 77, 4283-4285 (2000).
8. W. T. Wang, Z. H. Chen, G. Yang, D. Y. Guan, G. Z. Yang, Y. L. Zhou, and H. B. Lu, "Resonant absorption quenching and enhancement of optical nonlinearity in Au : BaTiO3 composite films by adding Fe nanoclusters," Appl Phys Lett 83, 1983-1985 (2003).
9. S. Dhara, R. Kesavamoorthy, P. Magudapathy, M. Premila, B. K. Panigrahi, K. G. M. Nair, C. T. Wu, K. H. Chen, and L. C. Chen, "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem Phys Lett 370, 254-260 (2003).
10. C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires," Nano Lett 8, 3081-3085 (2008).
11. M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nat Mater 5, 102-106 (2006).
12. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv Mater 18, 491-+ (2006).
13. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, "Highly ordered monocrystalline silver nanowire arrays," Journal of Applied Physics 91, 3243-3247 (2002).
14. J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio," Chemistry of Materials 15, 776-779 (2003).
15. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer tracts in modern physics 111 (Springer-Verlag, Berlin ; New York, 1988), pp. x, 136 p.
16. 邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 28, 472-485 (2006).
17. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys Rev Lett 83, 2845-2848 (1999).
18. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys Rep 408, 131-314 (2005).
19. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, "Plasmonics - A route to nanoscale optical devices (vol 13, pg 1501, 2001)," Adv Mater 15, 562-562 (2003).
20. C. Kittel, Introduction to Solid State Physics, second ed. (Wiley, New York, 1956).
21. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys Rev B 59, 12661-12666 (1999).
22. K. Berthold, R. A. Hopfel, and E. Gornik, "Surface-Plasmon Polariton Enhanced Photoconductivity of Tunnel-Junctions in the Visible," Appl Phys Lett 46, 626-628 (1985).
23. 吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊 28, 486-496 (2006).
24. A. Taflove and S. C. Hagness., Computational Electrodynamics: The Finite-Difference Time-Domain Method, third ed. (Artech House, Boston-London, 2005).
25. J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8(2001).
26. J. Kottmann and O. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Optics Letters 26, 1096-1098 (2001).
27. M. Y. Ng and W. C. Liu, in Fifth Asia-Pacific Conference on Near-Field Optics 2005),
28. D. Landolt, "Fundamental aspects of electropolishing," Electrochimica Acta 32, 1-11 (1987).
29. C. Wagner, "Contribution to the Theory of Electropolishing," Journal of The Electrochemical Society 101, 225-228 (1954).
30. F. Li, L. Zhang, and R. M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chemistry of Materials 10, 2470-2480 (1998).
31. P. G. Sheasby and R. Pinner., The Surface Treatment and Finishing of Aluminum and its Alloys, sixth ed. (ASM International & Finishing Publications, 2001).
32. G. D. Bengough and J. M. Stuart, Britist patent no.223994(1923).
33. H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn J Appl Phys 2 37, L1340-L1342 (1998).
34. S. J. Hurst, E. K. Payne, L. D. Qin, and C. A. Mirkin, "Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods," Angew Chem Int Edit 45, 2672-2692 (2006).
35. S. Shingubara, "Fabrication of Nanomaterials Using Porous Alumina Templates," Journal of Nanoparticle Research 5, 17-30 (2003).
36. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. N. Rao, and A. Fujishima, "Synthesis of Well-Aligned Diamond Nanocylinders," Adv Mater 13, 247-249 (2001).
37. A. Saedi and M. Ghorbani, "Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template," Mater Chem Phys 91, 417-423 (2005).
38. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50--420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics 84, 6023-6026 (1998).
39. H. Masuda, K. Yada, and A. Osaka, "Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution," Jpn. J. Appl. Phys. 37, L1340-L1342 (1998).
40. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, "Self-ordering regimes of porous alumina: The 10% porosity rule," Nano Lett 2, 677-680 (2002).
41. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, "Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization," Adv Mater 17, 2115 (2005).
42. Y. Li, "Fabrication of highly ordered nanoporous alumina films by stable high-field anodization," Nanotechnology 17, 5101 (2006).
43. V. P. Parkhutik and V. I. Shershulsky, "Theoretical Modeling of Porous Oxide-Growth on Aluminum," J Phys D Appl Phys 25, 1258-1263 (1992).
44. X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang, "Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template," Mater Chem Phys 90, 69-72 (2005).
45. J. A. Creighton and D. G. Eadon, "Ultraviolet Visible Absorption-Spectra of the Colloidal Metallic Elements," J Chem Soc Faraday T 87, 3881-3891 (1991).
46. S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J Phys Chem B 103, 4212-4217 (1999).