| 研究生: |
朱衍寒 Jhu, Yan-Han |
|---|---|
| 論文名稱: |
圓形薄膜附加環形質量之聲音穿透分析 Sound Transmission of a Circular Membrane with Ring Masses |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 聲學超穎材料 、穿透損失 、有效質量 、能量法 |
| 外文關鍵詞: | Acoustic Metamaterial, Transmission Loss, Effective Mass, Energy Method |
| 相關次數: | 點閱:107 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,局部共振的聲學超穎材料在低頻時有著良好的隔音效果。低頻噪音是在動力機械運轉上常會遇到的問題,這種噪音很難被傳統的混凝土擋土牆所隔絕,但是如果使用聲學超穎材料,就能很容易達成這個目標。雖然這些超穎材料很輕,但依然可以用於隔音。在此篇論文中,我們使用理論模型與分析圓形薄膜質量系統的穿透損失,之後使用有限元素軟體去計算聲學超穎材料用來探討其隔音效果。此篇論文我們討論薄膜與質量在調整質量重量、面積、以及作用於薄膜上的預拉力對於穿透損失、有效質量、聲功率的影響,更進一步考慮在多個質量體下的曲線變化。再者,調整質量體的搭配,由一個中心質量體改變為環形質量與多個質量體,可以看出在各曲線上會產生多個波峰與波谷的情況,而且我們可以調整質量放置位置、表面密度、質量數量都能看到在改變薄膜與質量的性質所帶來的影響,進而產生多個有效頻率。
In recent years, locally resonance acoustic metamaterials have displayed feasible sound insulation capabilities at low frequencies. Low frequency noise is often generated by machines when they are being operated and is difficult to be blocked by a traditional heavy concrete wall. Using acoustic metamaterials, sound insulation is much easier to be achieved. Although these metamaterials is usually light and thin, they still work well for insulating noise. In this thesis, we present a theoretical method to investigate transmission loss of circular membranes with mass inclusions, and the analytical results are compared with finite element results. We then discuss the characteristics of transmission loss (TL), effective dynamic mass, and sound power flow. We adjusted the mass weight, area and the pretension force on the edges of the membrane and considered their effect on TL curves. Furthermore, the central mass embedded in the structure was replaced by the ring mass, and we also considered a membrane with both one central mass and one ring mass or a membrane containing two masses. The TL valley and peak frequency and bandwidth can be tuned by varying surface density, the number of rings, and ring locations.
[1]Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng,“Membrane-type acoustic metamaterials with negative dynamic mass,”Phys. Rev. Lett. 101, 204301 (2008).
[2]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt,“Transmission loss and dynamic response of membrane-type locally resonance acoustic metamaterials,”J. Appl. Phys. 108, 114905 (2010).
[3]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt,“Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses,”J. Appl. Phys. 110, 124903 (2011).
[4]Y. G. Zhang, J. H. Wen, Y. Xiao, X. S. Wen, and J. W. Wang,“Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials,”Phys. Lett. A 376, 1489-1494 (2012).
[5]H. Tian, X. Wang, Y. H. Zhou,“Theoretical model and analytical approach for a circular membrane-ring structure of locally resonant acoustic metamaterial,”Appl. Phys. A 114, 985-990 (2014).
[6]Y. Chen, G. Huang, X. Zhou, G. Hu, and C. Sun,“Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model,”J. Acoust. Soc. Am. 136 (3), 969-976 (2014).
[7]F. Fahy and P. Gardonio, Sound and Structural Vibration (Elsevier/Academic, Amsterdam; London, 2007), pp. 277-281.
[8]J. F. Doyle, Structural Dynamics and Stability (2007), pp. 129-134.
[9]Y. G. Zhang, J. H. Wen, Y. Xiao, X. S. Wen, and J. W. Wang,“Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials,”Phys. Lett. A 376, 1489-1494 (2012).
[10]H. Tian, X. Wang, Y. H. Zhou,“Theoretical model and analytical approach for a circular membrane-ring structure of locally resonant acoustic metamaterial,”Appl. Phys. A 114, 985-990 (2014).
[11]S. Lane, S. Griffin, and R. Richard,“Fairing noise mitigation using passive vibroacoustic attenuation devices,”J SPACECRAFT ROCKETS. 43(1), 31-44 (2006).
[12]K.T. Chan, X. Q. Wang, and T. P. Leung,“Free vibration of beams with two sections of distributed mass,”J. Vib. Acoust. 120, 944-948(1998).
[13]COMSOL, Acoustic module user’s guide (2015), pp. 80-163.
[14]M. R. F. Kidner, C. R. Fuller, and B. Gardner,“Increase in transmission loss of single panels by addition of mass inclusions to a poro-elastic layer: Experimental investigation,” J. Sound Vib. 294(3), 466-472(2006).
[15]K. Idrisi, M .E. Johnson, A. Toso, and J. P. Carneal,“Increase in transmission loss of a double panel system by addition of mass inclusions to a poro-elastic layer: A comparison between theory and experiment,”J. Sound Vib. 323, 51-66 (2009).
[16]M. Dah-You,“Theory and design of mircoperforated panel sound absorbing constructions,”Sci. Sin. 18(1), 55-71 (1974).
[17]Z. Liu, X. Zhang, Y. Mao, Z. Yang, C. T. Chan, and P. Sheng,“Locally resonant sonic materials,”Science 289, 1734-1736 (2000).
[18]M. Hirsekorn, P. P. Delsanto, N. K. Batra, and P. Matic,“Modeling and simulation of acoustic wave propagation in locally resonant sonic materials,”Ultrasonics 42, 231-235 (2004).
[19]K. M. Ho, C. K. Cheng, Z. Yang, X. X. Zhang, and P. Sheng,“Broadband locally resonant sonic shields,“Appl. Phys. Lett. 83(26), 5566-5568 (2003).
[20]J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs,“Extremely Low Frequency Plasmons in Metallic Mesostructures,”Phys. Rev. Lett. 76, 4773 (1996).
[21]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire,“Metamaterials and Negative Refractive Index,”Science 305, 788-792 (2004).
[22]J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang,“Experimental demonstration of an acoustic magnifying hyperlens,”Nature Mater. 8, 931 (2009).
[23]H. Larabi, Y. Pennec, B. Djafari-Rouhani, and J. O. Vasseur,“Multicoaxial cylindrical inclusions in locally resonant phononic crystals,”Phys. Rev. E 75, 066601 (2007).
[24]H. Zhao. J. Wen, D. Yu, and X. Wen,“Low-frequency acoustic absorption of localized resonances: Experiment and theory,”J. Appl. Phys. 107, 023519 (2010).
[25]S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim,“Acoustic metamaterial with negative density,”Phys. Lett. A 373, 4464-4469 (2009).
[26]Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng,“Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime,”Appl. Phys. Lett. 96, 041906 (2010).
[27]Y. G. Zhang, J. Wen, H. G. Zhao, D. L. Yu, L. Cai, and X. S. Wen,“Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells,”J. Appl. Phys. 114, 063515 (2013).
[28]C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt,“Scaling of membrane-type locally resonant acoustic metamaterial arrays,”J. Acoust. Soc. Am. 132(4), 2784-2792 (2012).
[29]J. S. Bolton, N. M. Shiau, and Y. J. Kang,“Sound transmission through muti-panel structures lined with elastic porous materials,”J. Sound Vib. 191(3), 317-347 (1996).
[30]Y. H. Chen,“Sound transmission of membrane-type acoustic metamaterial with multiple frame masses,”S.M. Thesis (National Cheng Kung University, July 2014).