簡易檢索 / 詳目顯示

研究生: 吳宏鳴
Wu, Hong-Ming
論文名稱: 具有新架橋模型的非氧基雙釩錯合物 及含有希夫鹼的過渡金屬錯化物催化硫氧化反應的探討
Non-oxido Divanadium Complexes with New Types of bridging Motifs / Catalytic Sulfoxidation by Transition Metal Complexes with Schiff Base Ligands
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 116
中文關鍵詞: 非氧基釩含硫配位基氧硫族催化硫單氧化反應希夫鹼配位基
外文關鍵詞: non-oxo vanadium, thiolate ligands, chalcogen, sulfoxidation, Schiff base ligands
相關次數: 點閱:58下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過度金屬與具有生物活性的含硫配位基像半胱胺酸及穀胱甘肽之間的作用,在對於生物學或醫學領域上都是不可或缺的議題。因此,我們致力於了解釩金屬與具有仿生物活性的含硫配位基之間的化學現象。此外,有機硫化物的氧化反應在化學燃料、生物學及醫學領域上是個非常有趣的課題,所以在這份研究當中,我們主要的研究方向著重在釩硫化學及有機硫化物的催化氧化作用上。
    第一部分,我們成功的合成出六個非含氧基釩硫化合物,分別為[PPh4]2[VIV2(PS3)2(µ-Se2)(µ-Se)] (1)、 [VV2(PS3”)2(µ-Se2)(µ-Se)] (2)、 [VV2(PS3”)2(µ-S2)(µ-S)] (3a)、[VV2 (PS3)2(µ-S2)(µ-S)] (3b)、[PPh4][VIV2(PS3”)2(μ-OMe)3] (4)和 [PPh4][VIV(PS3”)(η2-Se2)] (5) ([PS3]3 = [P(C6H4-2-S)3]3PS3”]3 = [P(C6H3-3-Me3Si-2-S)3]3),同時也鑑定這些化合物的固體結構。化合物1, 2, 3a及3b有相似的配位環境,兩個釩金屬中心都是由一個硫族原子及硫族雙原子作為架橋鍵結,形成V2(µ-E)(µ–η2:η2-E2) (E = S or Se)的核心構造。化合物4則的兩個釩金屬中心則是由三個甲氧基作為架橋鍵結,V2(µ-OMe)3的核心構造。化合物1是雙核釩四價化合物,由於兩個d1電子間有強的反鐵磁作用,所以使化合物1為反鐵磁化合物。化合物2、3a及3b三個是存在於釩的最高氧化態,在文獻上少見的雙釩五價化合物,特別是在以硫族原子作為架橋鍵結的雙釩化合物未曾見過的。化合物4則是一個少見的順磁性的例子。在此,我們可以藉由低價釩金屬與硫族原子進行反應而得到高價釩化合物。
    第二部分中,利用含有希夫鹼配位基的過渡金屬錯合物來探討催化硫氧化反應,反應的過程是以醇類作為溶劑,而雙氧水則作為氧化劑。在這些試驗當中,最佳的催化硫氧化反應是利用鈦四價與配位基L3c的錯合物作為催化劑:催化甲基(對-甲苯基)硫醚的催化氧化反應速率可以達到每小時87個循環。

    The chemistry of transition metal ions binding with sulfur containing bio-ligands such as cysteine and glutathione is an important subject in various biological and medical systems. Thus, efforts have been made on understanding the chemistry of vanadium complexes with thiolate ligands that mimic biological S-donors. In addition, oxidation of organic sulfide compounds is also involved in the refinement of chemical fuels and drug syntheses. Based on these backgrounds, two topics will be studied in this thesis.
    At the first part, several non-oxido high-valent vanadium complexes were synthesized and fully characterized. They are [PPh4]2[VIV2(PS3)2(µ-Se2)(µ-Se)] (1), [VV2(PS3”)2(µ-Se2)(µ-Se)] (2). [VV2(PS3”)2(µ-S2)(µ-S)] (3a), [VV2 (PS3)2(µ-S2)(µ-S)] (3b), [PPh4][VIV2(PS3”)2(μ-OMe)3] (4), and [PPh4][VIV(PS3”)(η2-Se2)] (5) ([PS3]3 = [P(C6H4-2-S)3]3PS3”]3 = [P(C6H3-3-Me3Si-2-S)3]3). The structures of complexes (1, 2, 3a and 3b) consist of a similar divanadium motif, in which two metal centers are bridged by one µ-chalcogenide and one µ–η2:η2-dichalcogenide, forming a V2(µ-E)(µ–η2:η2-E2) (E = S or Se) core structure. The structure of complex 4 consists of two metal centers bridged by three µ-methoxide groups, giving a V2(µ-OMe)3 core structure. Compounds 1 and 4 have divanadium(IV) centers, but exhibit different magnetic properties; one shows a diamagnetic behavior indicating a strong antiferromagnetic coupling between two d1 centers and the other displays a paramagnetic nature. Notably, compounds 2 and 3a–b have the highest oxidation states for vanadium ions (+5/+5) among those reported divanadium chalcogenide clusters. The work also demonstrates that high-valent divanadium chalcogenide clusters can be obtained with the activation of elemental chalcogens by low-valent vanadium ions.
    At the second part, transition metal complexes of Schiff base ligands were explored for catalytic sulfoxidation. The reactions were run in alcohol solvents with hydrogen peroxide as an oxidant. Among the reactions, Ti4+ complex with ligand L3c (o-xylenylididene-di(amino)-bis(2-deoxy--D-glucopyanose)) has the best catalytic performance; the TOF is 87 h-1 for the sulfoxidation of methyl p-tolylsulfide.

    Abstract I Abstract(中文摘要) II 誌謝 III Table of Contents IV List of Figures VI List of Tables XI Abbreviations XIII Part I Non-oxido Divanadium Complexes with New Types of bridging Motifs 1 Chap 1 Introduction 2 1-1 Vanadium chalcogenide chemistry in biological system 2 1-2 Transition metal sulfur chemistry in industry 3 1-3 Non-oxo (bare) divanadium chalcogenide chemistry 3 1-4 Magnetic chemistry of dinuclear vanadium(IV) system 7 1-5 The motivation of this work 9 Chap 2 Results and Discussion 10 2-1 Synthesis 10 2-2 Chemistry of [PPh4]2[VIV2(PS3)2(µ-Se2)(µ-Se)] (1) 12 2-3 Chemistry of [VV2 (PS3”)2(µ-Se2)(µ-Se)] (2) 22 2-4 Chemistry of [VV2(PS3”)2(µ-S2)(µ-S)] (3a) 29 2-5 Chemistry of [VV2(PS3)2(µ-S2)(µ-S)] (3b) 36 2-6 Chemistry of [PPh4][VIV2(PS3”)2(µ-OMe)3] (4) 44 2-7 Chemistry of [PPh4][VIV(PS3”)(2-Se2)](5) 53 2-8 Discussion 57 Chap 3 Conclusion 63 Chap 4 Experimental and Instruments 64 4-1 General Procedures 64 4-2 Synthesis 65 4-3 Instruments 66 Part II The Catalytic Sulfoxidation by Transition Metal Complexes containing with Schiff Base Ligands 69 Chap 1 Introduction 70 Chap 2 Results and Discussion 74 2-1 The Syntheses and Characterization of Schiff Base Ligands 74 2-2 Oxidation of sulfides catalyzed by transition metal complexes (Ti4+, VO2+, Fe2+, Cu2+) 79 Chap 3 Conclusion 84 Chap 4 Experimental and Instruments 85 4-1 General Procedures 85 4-2 Syntheses and Catalytic Reactions 86 4-3 Instruments 88 Reference 89 Appendix A 97 Appendix B 101

    (1) Young, C. G. Facets of early transition metal–sulfur chemistry: Metal–sulfur ligand redox, induced internal electron transfer, and the reactions of metal–sulfur complexes with alkynes. J. Inorg. Biochem. 2007, 101, 1562-1585.
    (2) Rehder, D.; Santoni, G.; Licini, G. M.; Schulzke, C.; Meier, B. The medicinal and catalytic potential of model complexes of vanadate-dependent haloperoxidases. Coord. Chem. Rev. 2003, 237, 53-63.
    (3) Rehder, D.; Costa Pessoa, J.; Geraldes, C.; Castro, M.; Kabanos, T.; Kiss, T.; Meier, B.; Micera, G.; Pettersson, L.; Rangel, M.; Salifoglou, A.; Turel, I.; Wang, D. In vitro study of the insulin-mimetic behaviour of vanadium(IV, V) coordination compounds. J. Biol. Inorg. Chem. 2002, 7, 384-396.
    (4) Rehder, D. The coordination chemistry of vanadium as related to its biological functions. Coord. Chem. Rev. 1999, 182, 297-322.
    (5) Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L. That chemistry and Biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849-902.
    (6) Simonnet-Jegat, C.; Secheresse, F. Binary vanadium chalcogenide complexes. Chem. Rev. 2001, 101, 2601-2611.
    (7) Rehder, D. Vanadium nitrogenase. J. Inorg. Biochem. 2000, 80, 133-136.
    (8) Hu, Y.; Lee, C. C.; Ribbe, M. W. Vanadium nitrogenase: A two-hit wonder? Dalton Trans. 2012, 41, 1118-1127.
    (9) Michibata, H.; Yamaguchi, N.; Uyama, T.; Ueki, T. Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord. Chem. Rev. 2003, 237, 41-51.
    (10) Garner, C. D.; Armstrong, E. M.; Berry, R. E.; Beddoes, R. L.; Collison, D.; Cooney, J. J. A.; Ertok, S. N.; Helliwell, M. Investigation of amavadin. J. Inorg. Biochem. 2000, 80, 17-20.
    (11) Rehder, D. Biological and medicinal aspects of vanadium. Inorg. Chem. Commun. 2003, 6, 604-617.
    (12) Dean, N. S.; Bartley, S. L.; Streib, W. E.; Lobkovsky, E. B.; Christou, G. Combination of metal-metal bonding and antiferromagnetic exchange interaction in the d2-d2 complex [V2O(SPh)4(Me2-bpy)2]THF (Me2-bpy = 4,4'-dimethylbipyridine). Inorg. Chem. 1995, 34, 1608-1616.
    (13) Topsøe, H.; Clausen, B. S.; Massoth, F. E.: Hydrotreating Catalysis. In Catalysis: Science and Technology; Anderson, J. R., Boudart, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1996; pp 1-269.
    (14) Ledoux, M. J.; Michaux, O.; Hantzer, S.; Panissod, P.; Petit, P.; Andre, J.-J.; Callot, H. J. Hydrodesulfurization (HDS) poisoning by vanadium compounds: EPR and metal solid NMR analysis. J. Catal. 1987, 106, 525-537.
    (15) Chang, Y.-H.; Su, C.-L.; Wu, R.-R.; Liao, J.-H.; Liu, Y.-H.; Hsu, H.-F. An eight-coordinate vanadium thiolate complex with charge delocalization between V(V)−thiolate and V(IV)−thiyl radical Forms. J. Am. Chem. Soc. 2011, 133, 5708-5711.
    (16) Crans, D. C.; Zhang, B.; Gaidamauskas, E.; Keramidas, A. D.; Willsky, G. R.; Roberts, C. R. Is vanadate reduced by thiols under biological conditions? Changing the redox potential of V(V)/V(IV) by complexation in aqueous solution. Inorg. Chem. 2010, 49, 4245-4256.
    (17) Hsu, H.-F.; Su, C.-L.; Gopal, N. O.; Wu, C.-C.; Chu, W.-C.; Tsai, Y.-F.; Chang, Y.-H.; Liu, Y.-H.; Kuo, T.-S.; Ke, S.-C. Redox chemistry in the reaction of oxovanadium(V) with thiolate-containing ligands: the isolation and characterization of non-oxo vanadium(IV) complexes containing disulfide and thioether groups. Eur. J. Inorg. Chem. 2006, 1161-1167.
    (18) Hector, A. L.; Jura, M.; Levason, W.; Reid, S. D.; Reid, G. Vanadium selenoether and selenolate complexes, potential single-source precursors for CVD of VSe2 thin films. New J. Chem. 2009, 33, 641-645.
    (19) Hector, A. L.; Levason, W.; Middleton, A. J.; Reid, G.; Webster, M. Vanadium(IV) and oxidovanadium(IV) and -(V) complexes with soft thioether coordination - synthesis, spectroscopic and structural studies. Eur. J. Inorg. Chem. 2007, 3655-3662.
    (20) Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B-Struct. Sci. 2002, 58, 380-388.
    (21) Bose, S. K.; Geetharani, K.; Ramkumar, V.; Varghese, B.; Ghosh, S. Chemistry of vanadaboranes: synthesis, structures, and characterization of organovanadium sulfide clusters with disulfido linkage. Inorg. Chem. 2010, 49, 2881-2888.
    (22) Schiemann, J.; Hubener, P.; Weiss, E. μ-E[V(CO)3diphos]2 (E=S, Se, Te) complexes with linear VEV multiple-bond systems. Angew. Chem. Int. Ed. Engl. 1983, 22, 980-981.
    (23) Albrecht, N.; Hubener, P.; Behrens, U.; Weiss, E. Compounds with vanadium-chalkogen and chromium-chalkogen multiple bonds crystal-structures of (μ-Se)[V(CO)3(Dppe)]2 and (μ-Te)[V(CO)3(Dppe)]2. Chem. Ber. 1985, 118, 4059-4067.
    (24) Moore, M.; Feghali, K.; Gambarotta, S. Preparation and characterization of a diamagnetic sulfide-bridged divanadium amide complex. Inorg. Chem. 1997, 36, 2191-2194.
    (25) Gerlach, C. P.; Arnold, J. Synthesis, structure, and reactivity of three-coordinate vanadium(III) chalcogenolates and vanadium(V) chalcogenide chalcogenolates. Inorg. Chem. 1996, 35, 5770-5780.
    (26) Floriani, C.; Gambarotta, S.; Chiesi-Villa, A.; Guastini, C. Reaction of elemental sulphur with bis(pentamethylcyclopentadienyl)vanadium derivatives: disulphido and [small micro]-sulphido complexes. Crystal structures of [V(η5-C5Me5)2(μ-S2)] and [V2(η5-C5Me5)2Cl2(μ-S)2]. J. Chem. Soc., Dalton Trans. 1987, 2099-2103.
    (27) Sendlinger, S. C.; Nicholson, J. R.; Lobkovsky, E. B.; Huffman, J. C.; Rehder, D.; Christou, G. Reactivity studies of mononuclear and dinuclear vanadium-sulfide-thiolate compounds. Inorg. Chem. 1993, 32, 204-210.
    (28) Duraj, S. A.; Andras, M. T.; Kibala, P. A. Metal-metal bonds involving vanadium atoms. A facile synthesis of a novel divanadium tetrakis(dithioacetate) that contains two μ-η2-S2 bridges from bis(benzene)vanadium(0) and dithioacetic acid. Inorg. Chem. 1990, 29, 1232-1234.
    (29) Yang, Y.; Huang, L.; Liu, Q.; Kang, B. Structure of a binuclear disulfido–vanadium complex, [V2(μ-η2-S2)2(Et2NCS2)4]. Acta Cryst. 1991, 47, 2085-2087.
    (30) Lei, X.-J.; Jiang, F.-L.; Wu, D.-X.; Hong, M.-C.; Huang, Z.-Y.; Liu, H.-Q. Synthesis and crystal structure of [V2(μ-S2)2(S2CNEt2)4] · 2CH3Cl. Chin. J. Chem. 1993, 11, 40-44.
    (31) Sokolov, M.; Virovets, A.; Oeckler, O.; Simon, A.; Fedorov, V. Syntheses and X-ray structures of a series of V2S4(RCS2)4 (R=alkoxy, dialkylamino) complexes. Inorg. Chim. Acta 2002, 331, 25-30.
    (32) Halbert, T. R.; Hutchings, L. L.; Rhodes, R.; Stiefel, E. I. Induced redox reactivity of tetrathiovanadate(V): synthesis of the vanadium(IV) dimer V2(μ-S2)2(iso-Bu2NCS2)4 and its structural relationship to the V/S mineral patronite. J. Am. Chem. Soc. 1986, 108, 6437-6438.
    (33) Bolinger, C. M.; Rauchfuss, T. B.; Rheingold, A. L. Synthesis and structures of the vanadium sulfide cluster compounds (iso-PrC5H4)2V2S4 and (C5H5)2V2S2[S2C2(CF3)2]: the influence of .pi.-bonding on the geometry of the .mu.-disulfido ligand. J. Am. Chem. Soc. 1983, 105, 6321-6323.
    (34) Rheingold, A. L.; Bolinger, C. M.; Rauchfuss, T. B. Bis(η5-methylcyclopentadienyl)divanadium pentaselenide. Acta Crystallogr. Sect. C-Struct. Chem. 1986, 42, 1878-1880.
    (35) Bolinger, C. M.; Rauchfuss, T. B.; Rheingold, A. L. Structure of (MeC5H4)2V2S5 and its acetylene addition reaction. Organometallics 1982, 1, 1551-1553.
    (36) Taylor, M. K.; Evans, D. J.; Young, C. G. Highly-oxidised, sulfur-rich, mixed-valence vanadium(IV/V) complexes. Chem. Commun. 2006, 4245-4246.
    (37) Plass, W. Magneto-structural correlations in dinuclear d1-d1 Complexes: structure and magnetochemistry of two ferromagnetically coupled vanadium(IV) dimers. Angew. Chem. Int. Ed. 1996, 35, 627 - 631.
    (38) Tsai, Y.-F.; Huang, G.-S.; Yang, C.-I.; Tsai, H.-L.; Liu, Y.-H.; Kuo, T.-S.; Hsu, H.-F. Dinuclear oxovanadium(IV) thiolate complexes with frrromagnetically coupled interaction between vanadium centers. Inorg. Chem. 2007, 46, 10467-10469.
    (39) Gerlach, C. P.; Arnold, J. Synthesis and reactivity of a vanadium(III)-methyl complex stabilized by hexamethylsilazanate ligands. Organometallics 1996, 15, 5260-5262.
    (40) Duan, Z. B.; Schmidt, M.; Young, V. G.; Xie, X. B.; McCarley, R. E.; Verkade, J. G. The novel bis(oxo-bridged) dinuclear vanadium(IV) complex {(μ-O)2V2[N(SiMe3)2]4}: An unexpected reaction product. J. Am. Chem. Soc. 1996, 118, 5302-5303.
    (41) Rosenberger, G.; Schrock, R. R.; Davis, W. M. Synthesis and structure of a trigonal monopyramidal vanadium(III) complex, [(C6F5NCH2CH2)3N]V, and the vanadium(IV) product of its oxidation, {[(C6F5NCH2CH2)2N(CH2CH2NHC6F5)]V(O)}2. Inorg. Chem. 1997, 36, 123-125.
    (42) Westrup, K. C. M.; Gregorio, T.; Stinghen, D.; Reis, D. M.; Hitchcock, P. B.; Ribeiro, R. R.; Barison, A.; Back, D. F.; de Sa, E. L.; Nunes, G. G.; Soares, J. F. Non-oxo vanadium(IV) alkoxide chemistry: solid state structures, aggregation equilibria and thermochromic behaviour in solution. Dalton Trans. 2011, 40, 3198-3210.
    (43) Hsu, H.-F.; Su, C.-L.; Gopal, N. O.; Wu, C.-C.; Chu, W.-C.; Tsai, Y.-F.; Chang, Y.-H.; Liu, Y.-H.; Kuo, T.-S.; Ke, S.-C. Redox Chemistry in the reaction of oxovanadium(V) with thiolate containing ligands: The isolation and characterization of nonoxovanadium(IV) complexes containing the forming disulfide and thioether. Eur. J. Inorg. Chem. 2006, 1161-1167.
    (44) Notni, J.; Pohle, K.; Peters, J. A.; Goerls, H.; Platas-Iglesias, C. Structural Study of Ga(III), In(III), and Fe(III) Complexes of Triaza-Macrocycle Based Ligands with N3S3 Donor Set. Inorg. Chem. 2009, 48, 3257-3267.
    (45) Chen, T.-T.; Chen, Y.-S.; Chang, Y.-H.; Wang, J.-C.; Tsai, Y.-F.; Lee, G.-H.; Kuo, T.-S.; Hsu, H.-F. Activation of dichloromethane by a V(iii) thiolate complex: an example of S-based nucleophilic reactivity in an early transition metal thiolate. Chem. Commun. 2013, 49, 1109-1111.
    (46) Hogarth, G.; Richards, I. Regioselective and reversible carbon-nitrogen bond formation: Synthesis, structure and reactivity of ureato-bridged complexes Mo2(NAr)2(μ-X){μ-ArNC(O)NAr}(S2CNR2)2 (Ar = Ph, p-tol; X = S, NAr; R = Me, Et, Pr). Dalton Trans. 2005, 760-773.
    (47) Coffey, T. A.; Hogarth, G. ynthesis and structure of [Mo2(NR)2(η2-S2CNEt2)2(μ-S)(μ-η2-η2-S2)] (R=2,6-Pri2C6H3): A molecular model for molybdenum trisulphide? Polyhedron 1997, 16, 165-169.
    (48) Hughes, D. L.; Lane, J. D.; Richards, R. L.; Shortman, C. Disulfur-bridged complexes of molybdenum crystal structure of the dimolybdenum(IV) complex (MoCl3(C4H8S))2(μ-S2)(μ-C4H8S) and of the Mo(IV)Mo(V) complex (Me2S)2Cl2Mo(μ-S2)(μ-S)MoCl3(SMe2). J Chem Soc Dalton 1994, 621-626.
    (49) Drew, M. G. B.; Fowles, G. W. A.; Page, E. M.; Rice, D. A. A unique triple atom bridge: x-ray structure of the μ-selenido-μ-diselenido-bis(tetrachloro)tungstate(V) ion. J. Am. Chem. Soc. 1979, 101, 5827-5828.
    (50) Chau, C. N.; Wardle, R. W. M.; Ibers, J. A. Soluble metal selenides. synthesis and structure of the tridecaselenidodivanadate anion, V2Se132-. Inorg. Chem. 1987, 26, 2740-2741.
    (51) Herberhold, M.; Kuhnlein, M.; Schrepfermann, M.; Ziegler, M. L.; Nuber, B. Dinuclear pentamethylcyclopentadienyl vanadium complexes with different chalcogens in a bridged system - V-51 NMR-spectroscopy of compounds and X-ray structural-analysis of (Cp*)2V2Se2S2 and (Cp*)2V2Se3O. J. Organomet. Chem. 1990, 398, 259-274.
    (52) Herberhold, M.; Kuhnlein, M. Binuclear pentamethylcyclopentadienyl-vanadium complexes containing chalcogen bridges. New J. Chem. 1988, 12, 357-359.
    (53) Rehder, D. Vanadium NMR of organovanadium complexes. Coord. Chem. Rev. 2008, 252, 2209-2223.
    (54) Nanda, K. K.; Sinn, E.; Addison, A. W. The first oxovanadium(V)−thiolate complex, [VO(SCH2CH2)3N]. Inorg. Chem. 1996, 35, 1-2.
    (55) Cornman, C. R.; Stauffer, T. C.; Boyle, P. D. Oxidation of a vanadium(V)−dithiolate complex to a vanadium(V)−η2,η2-disulfenate complex. J. Am. Chem. Soc. 1997, 119, 5986-5987.
    (56) Davies, S. C.; Hughes, D. L.; Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sanders, J. R.; Silverston, J. E.; Sobota, P. Vanadium complexes of the N(CH2CH2S)33- and O(CH2CH2S)22- ligands with coligands relevant to nitrogen fixation processes. Inorg. Chem. 2000, 39, 3485-3498.
    (57) Wang, Y.; Wang, M.; Wang, Y.; Wang, X.; Wang, L.; Sun, L. Highly enantioselective sulfoxidation with vanadium catalysts of Schiff bases derived from bromo- and iodo-functionalized hydroxynaphthaldehydes. J. Catal. 2010, 273, 177-181.
    (58) Gao, A.; Wang, M.; Shi, J.; Wang, D.; Tian, W.; Sun, L. Asymmetric oxidation of sulfides catalyzed by chiral (salen)Mn(III) complexes with a pyrrolidine backbone. Appl. Organometal. Chem. 2006, 20, 830-834.
    (59) Legros, J.; Dehli, J. R.; Bolm, C. Applications of catalytic asymmetric sulfide oxidations to the syntheses of biologically active sulfoxides. Adv Synth Catal 2005, 347, 19-31.
    (60) Legros, J.; Bolm, C. Investigations on the iron-catalyzed asymmetric sulfide oxidation. Chem. Eur. J. 2005, 11, 1086-1092.
    (61) Legros, J.; Bolm, C. Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide under simple reaction conditions. Angew Chem Int Edit 2004, 43, 4225-4228.
    (62) Legros, J.; Bolm, C. Iron-catalyzed asymmetric sulfide oxidation with aqueous hydrogen peroxide. Angew Chem Int Edit 2003, 42, 5487-5489.
    (63) Saito, B.; Katsuki, T. Ti(salen)-catalyzed enantioselective sulfoxidation using hydrogen peroxide as a terminal oxidant. Tetrahedron Lett. 2001, 42, 3873-3876.
    (64) Takizawa, S.; Katayama, T.; Sasai, H. Dinuclear chiral vanadium catalysts for oxidative coupling of 2-naphthols via a dual activation mechanism. Chem. Commun. 2008, 4113-4122.
    (65) Tada, M.; Kojima, N.; Izumi, Y.; Taniike, T.; Iwasawa, Y. Chiral self-dimerization of vanadium complexes on a SiO2 surface for asymmetric catalytic coupling of 2-naphthol: Structure, performance, and mechanism. J Phys Chem B 2005, 109, 9905-9916.
    (66) Sharma, V. B.; Jain, S. L.; Sain, B. Copper (II) Schiff base catalysed aerobic oxidative coupling of 2-naphthols: an efficient and simple synthesis of binaphthols. J. Mol. Catal. a-Chem. 2004, 219, 61-64.
    (67) Elschenbroich, C.; Lu, F.; Burghaus, O.; Harms, K.; Pebler, J. Bis(5-trovacenyl)dichalcogenides: synthesis, structure, and study of intramolecular communication. Z. Anorg. Allg. Chem. 2011, 637, 1750-1755.
    (68) Luo, X. Y.; Jin, Z. C.; Li, P. F.; Gao, J. B.; Yue, W. M.; Liang, X. M.; Ye, J. X. Catalytic asymmetric Michael addition of alpha,beta-unsaturated aldehydes to Ni(II) complexes of the Schiff base of glycine. Org Biomol Chem 2011, 9, 793-801.
    (69) Pescitelli, G.; Di Bari, L.; Salvadori, P. Effect of water on BINOL/Ti((OiPr)4 solution mixtures: The nature of a catalytic precursor of enantioselective sulfoxidation. J. Organomet. Chem. 2006, 691, 2311-2318.
    (70) Reddy, C. V.; Verkade, J. G. An advantageous tetrameric titanium alkoxide/ionic liquid as a recyclable catalyst system for the selective oxidation of sulfides to sulfones. J. Mol. Catal. a-Chem. 2007, 272, 233-240.
    (71) Shin, J. M.; Cho, Y. M.; Sachs, G. Chemistry of covalent inhibition of the Gastric (H+, K+)-ATPase by proton pump inhibitors. J. Am. Chem. Soc. 2004, 126, 7800-7811.
    (72) Cotton, H.; Elebring, T.; Larsson, M.; Li, L.; Sorensen, H.; von Unge, S. Asymmetric synthesis of esomeprazole. Tetrahedron: Asymmetry 2000, 11, 3819-3825.
    (73) Patrick, G. L.: An introduction to medicinal chemistry; Oxford University Press, 2001. pp. 585-586.
    (74) Santoni, G.; Mba, M.; Bonchio, M.; Nugent, W. A.; Zonta, C.; Licini, G. Stereoselective control by face-to-face versus edge-to-face Aromatic interactions: the case of C3-Ti(IV) amino trialkolate sulfoxidation catalysts. Chem. Eur. J. 2010, 16, 645-654.
    (75) Panda, M. K.; Shaikh, M. M.; Ghosh, P. Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant. Dalton Trans. 2010, 39, 2428-2440.
    (76) Mba, M.; Prins, L. J.; Zonta, C.; Cametti, M.; Valkonen, A.; Rissanen, K.; Licini, G. Ti(IV)-amino triphenolate complexes as effective catalysts for sulfoxidation. Dalton Trans. 2010, 39, 7384-7392.
    (77) Mba, M.; Prins, L. J.; Licini, G. C3-Symmetric Ti(IV) triphenolate amino complexes as sulfoxidation catalysts with aqueous hydrogen peroxide. Organic Letters 2007, 9, 21-24.
    (78) Wang, X.; Wang, X.; Guo, H.; Wang, Z.; Ding, K. Self-supported heterogeneous titanium catalysts for enantioselective carbonyl–ene and sulfoxidation reactions. Chem. Eur. J. 2005, 11, 4078-4088.
    (79) Scarso, A.; Strukul, G. Asymmetric sulfoxidation of thioethers with hydrogen peroxide in water mediated by platinum chiral catalyst. Adv Synth Catal 2005, 347, 1227-1234.
    (80) Hinch, M.; Jacques, O.; Drago, C.; Caggiano, L.; Jackson, R. F. W.; Dexter, C.; Anson, M. S.; Macdonald, S. J. F. Effective asymmetric oxidation of enones and alkyl aryl sulfides. J. Mol. Cata. A: Chem. 2006, 251, 123-128.
    (81) Gao, A.; Wang, M.; Wang, D.; Zhang, L.; Liu, H.; Tian, W.; Sun, L. Asymmetric oxidation of sulfides catalyzed by vanadium(IV) complexes of dibromo- and diiodo-functionalized chiral Schiff Bases. Chin. J. Catal. 2006, 27, 743-748.
    (82) Jeong, Y.-C.; Huang, Y. D.; Choi, S.; Ahn, K.-H. Synthesis of sterically controlled chiral β-amino alcohols and their application to the catalytic asymmetric sulfoxidation of sulfides. Tetrahedron: Asymmetry 2005, 16, 3497-3501.
    (83) Pordea, A.; Mathis, D.; Ward, T. R. Incorporation of biotinylated manganese-salen complexes into streptavidin: new artificial metalloenzymes for enantioselective sulfoxidation. J. Organomet. Chem. 2009, 694, 930-936.
    (84) Chakraborty, D.; Malik, P.; Goda, V. K. A new methodology for the oxidation of sulfides with Fe(III) catalysts. Appl. Organometal. Chem. 2012, 26, 21-26.
    (85) Bryliakov, K. P.; Talsi, E. P. Iron-catalyzed oxidation of thioethers by iodosylarenes: stereoselectivity and reaction mechanism. Chemistry 2007, 13, 8045-8050.
    (86) Gamba, I.; Palavicini, S.; Monzani, E.; Casella, L. Catalytic sulfoxidation by dinuclear copper complexes. Chemistry 2009, 15, 12932-12936.
    (87) Capozzi, M. A. M.; Centrone, C.; Fracchiolla, G.; Naso, F.; Cardellicchio, C. A study of factors affecting enantioselectivity in the oxidation of aryl benzyl sulfides in the presence of chiral titanium catalysts. Eur. J. Org. Chem. 2011, 2011, 4327-4334.
    (88) Naso, F.; Cardellicchio, C.; Affortunato, F.; Capozzi, M. A. M. Asymmetric synthesis of Sulindac esters by enantioselective sulfoxidation in the presence of chiral titanium complexes. Tetrahedron: Asymmetry 2006, 17, 3226-3229.
    (89) Wang, Y.; Wang, M.; Wang, L.; Wang, Y.; Wang, X.; Sun, L. Asymmetric oxidation of sulfides with H2O2 catalyzed by titanium complexes of Schiff bases bearing a dicumenyl salicylidenyl unit. Appl. Organometal. Chem. 2011, 25, 325-330.
    (90) Ibdah, A. Computational study on chain pathways for oxygen atom transfer catalyzed by a methyl(dithiolate) thiorhenium(V) compound. Reaction Kinetics Mechanisms and Catalysis 2015, 116, 339-350.
    (91) Zhu, C.; Liang, J. X.; Wang, B. J.; Zhu, J.; Cao, Z. X. Significant effect of spin flip on the oxygen atom transfer reaction from (oxo)manganese(v) corroles to thioanisole: insights from density functional calculations. Physical Chemistry Chemical Physics 2012, 14, 12800-12806.
    (92) Keith, J. M.; Tomic, Z. D.; Zaric, S. D.; Hall, M. B. Oxygen atom transfer catalysis: Ligand effects on the key reaction barrier in molybdenum (VI) dioxo systems. J. Mol. Catal. a-Chem. 2010, 324, 15-23.
    (93) Laughlin, L. J.; Young, C. G. Oxygen atom transfer, coupled electron-proton transfer, and correlated electron-nucleophile transfer reactions of oxomolybdenum(IV) and dioxomolybdenum(VI) complexes. Inorg. Chem. 1996, 35, 1050-1058.
    (94) Skobelev, I. Y.; Zalomaeva, O. V.; Kholdeeva, O. A.; Poblet, J. M.; Carbo, J. J. Mechanism of thioether oxidation over di- and tetrameric Ti centres: kinetic and DFT studies based on model Ti-containing polyoxometalates. Chem. Eur. J. 2015, 21, 14496-14506.
    (95) Lattanzi, A.; Piccirillo, S.; Scettri, A. Enantioselective sulfoxidation and kinetic resolution combined protocol mediated by a functionalized (S)-norcamphor-based hydroperoxide/titanium(IV) isopropoxide system. Adv Synth Catal 2007, 349, 357-363.
    (96) Stingl, K. A.; Weiss, K. M.; Tsogoeva, S. B. Asymmetric vanadium- and iron-catalyzed oxidations: new mild (R)-modafinil synthesis and formation of epoxides using aqueous H2O2 as a terminal oxidant. Tetrahedron 2012, 68, 8493-8501.

    下載圖示 校內:2020-08-31公開
    校外:2021-07-31公開
    QR CODE