| 研究生: |
周鈺琳 Chou, Yu-Lin |
|---|---|
| 論文名稱: |
近紅外光驅動上轉換奈米粒子之生醫平台系統: 標靶作用,生醫影像與化學治療 Near-infrared light triggered photocaged upconversion nanoparticles for targeting、bioimage and chemotherapy |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 上轉換奈米粒子 、藥物釋放系統 、標定作用 、細胞與活體生物之化學治療 |
| 外文關鍵詞: | upconversion nanoparticles, drug delivery, photo-targeting, in vivo and in vitro chemotherapy |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們建立複合性的上轉換奈米粒子 (UCNPs) 作為藥物載體與精準控制釋放 (remote-control release) 的平台,應用於細胞 (in vitro) 與活體生物 (in vivo) 的螢光標定影像以及腫瘤組織的化學治療。奈米粒子經由表面修飾上葉酸 (FA)後對於細胞膜表面有葉酸抗原過度表現的癌細胞具高親和力。為了提高葉酸在各種癌細胞中的辨認性,我們在葉酸外部接上對於UV光敏感的光罩分子,以連續波二極體近紅外光雷射 (CW diode laser,980 nm)當作開關控制,當上轉換奈米粒子受980nm雷射光激發後,釋放的360 nm紫外光經螢光能量共振轉移使光罩分子斷鍵、脫落並外露具標定作用的葉酸分子,藉由葉酸分子裸露在材料表面與過度表現葉酸受體的癌細胞進行專一性的標定,當材料進入癌細胞內後,以S-S雙硫鍵接在表面的抗癌藥阿黴素DOX進行釋放,將藥物準確的釋放在腫瘤處達到化療效果 (chemotherapy)。因此以多功能性的上轉換奈米粒子作為提高專一性的螢光標定作用且同時達到更有效的治療平台。
In this study, we formulated upconversion nanoparticles (UCNPs) as the NIR-triggered targeting and drug delivery vehicles that successfully delivered in vitro and in vivo to perform near-infrared light photocontrolled targeting, bioimaging, and chemotherapy. To achieve phototargeting, the tumor-homing agent, i.e. folic acid (FA), has been constructed as a photoresponsive molecule. FA has high affinity to folate receptor (FR), where FR is overexpressed on cancer cell surfaces and acted as a tumor marker. However, the number of FR expressed heterogeneously among different cancer cells limiting the tumor delivery capacity of FR endocytosis. Hence, we synthesized FA as the caged folate which was sensitive to UV light illumination. That is NIR light irradiated UCNPs to activate phototargeting with subsequent bioimaging and chemotherapy. For the chemotherapeutic effect, the anti-tumor drug doxorubicin was thiolated on the surface of UCNPs forming disulfide bond that can be cleaved by lysosomal enzymes within the cells. The caged UNCPs can serve as a platform for the improvement of selectively targeting and possible reduction of adverse side effect from chemotherapy.
1. Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996, 100 (31), 13226–13239.
2. Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G., Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127 (18), 6516-6517.
3. Lin, Y. S.; Wu, S. H.; Hung, Y.; Chou, Y. H.; Chang, C.; Lin, M. L.; Tsai, C. P.; Mou, C. Y., Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem. Mater. 2006, 18 (22), 5170-5172.
4. 張芳瑜, 磁共振造影及光熱治療之雙功能複合材料的制備與探討. 國立成功大學化學研究所 2008.
5. Cheng, F. Y.; Wang, S. P.; Su, C. H.; Tsai, T. L.; Wu, P. C.; Shieh, D. B.; Chen, J. H.; Hsieh, P. C.; Yeh, C. S., Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 2008, 29 (13), 2104-2112.
6. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19 (4), 316-317.
7. He, X.; Wang, K.; Cheng, Z., In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Nanobiotechnol. 2010, 2 (4), 349-366.
8. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4 (6), 435-446.
9. Wang, F.; Liu, X., Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38 (4), 976-989.
10. Diamente, P. R.; Raudsepp, M.; Veggel, F. C. J. M. v., Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence. Adv. Funct. Mater. 2007, 17, 363-368.
11. Zhenhe, X.; Chunxia, L.; Piaoping, Y.; Cuimiao, Z.; Shanshan, H.; Jun, L., Rare earth fluorides nanowires/nanorods derived from hydroxides: hydrothermal synthesis and luminescence properties. Cryst. Growth Des. 2009, 9, 4752-4758.
12. Yan, R. X.; Li, Y. D., Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals. Adv. Funct. Mater. 2005, 15, 763-770
13. Vennerberg, D.; Lin, Z., Upconversion nanocrystals: Synthesis, properties, assembly and applications. Sci. Adv. Mater. 2011, 3 (1), 26-40.
14. Heer, S.; Kompe, K.; Godel, H. U.; Haase, M., Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102-2105.
15. Thoma, R. E.; Insley, H.; Hebert, G. M., Sodium fluoride-lanthanide trifluoride systems. Inorg. Chem. 1966, 5 (7), 1222-1229.,
16. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G., Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463 (7284), 1061-1065.
17. Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H., High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128 (19), 6426-6436.
18. Aebischer, A.; Hostettler, M.; Hauser, J.; Kramer, K.; Weber, T.; Gudel, H. U.; Buergi, H. B., Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem. Int. Edit. 2006, 45 (17), 2802-2806.
19. Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A., Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano. Lett. 2007, 7 (3), 847-852.
20. Wang, G.; Peng, Q.; Li, Y., Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131 (40), 14200-14201.,
21. Suyver, J. F.; Grimm, J.; van Veen, M. K.; Biner, D.; Kramer, K. W.; Gudel, H. U., Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin. 2006, 117 (1), 1-12.
22. Joubert, M. F., Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11 (2-3), 181-203.
23. Bloembergen, N., Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2 (3), 84-85.
24. Auzel, F. E., Materials and devices using double-pumped-phosphors with energy transfer. Proceedings of the IEEE 1973, 61 (6), 758-786.
25. Chivian, J. S.; Case, W. E.; Eden, D. D., Photon avalanche-new phenomenon in Pr3+ based infrared quantum counters. Appl. Phys. Lett. 1979, 35 (2), 124-125.)
26. Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed. Nnanotech. Boil. Med. 2011, 7 (6), 710-729.
27. Menyuk, N.; Pierce, J. W.; Dwight, K., NaYF4:Yb,Er - efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21 (4), 159-161.
28. Guangshun, Y.; Huachang, L.; Shuying, Z.; Yue, G.; Wenjun, Y.; Depu, C.; Liang-Hong, G., Synthesis, characterization, and biological application of size-Controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191-2196.
29. Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H., Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005, 127 (10), 3260-3261.
30. Boyer, J. C.; Cuccia, L. A.; Capobianco, J. A., Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano. Lett. 2007, 7 (3), 847-852.
31. Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A., Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128 (23), 7444-74445.
32. Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. R., Size- and phase-controlled synthesis of monodisperse NaYF4 : Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem C. 2007, 111 (37), 13730-13739.
33. Wei, Y.; Lu, F. Q.; Zhang, X. R.; Chen, D. P., Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4 : Yb,Er nanoplates. Chem. Mater. 2006, 18 (24), 5733-5737.
34. Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H., High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128 (19), 6426-6436.
35. (Wang L, Zhao WJ, Tan WH. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008, 1, 99-115.
36. Schafer H, Ptacek P, Kompe K, Haase M. Lanthanide-doped NaYF 4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem. Mater. 2007, 19, 1396-1400.
37. Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130 (10), 3023-3029.
38. Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y., Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44 (37), 6054-6057.
39. Guang-Shun, Y.; Gan-Moog, C., Water-soluble NaYF4:Yb,Er(Tm)/NaYF4 polymer core/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341-343.
40. Yi, G. S.; Chow, G. M., Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324-2329.
41. Zhang QB, Song K, Zhao JW, Kong XG, Sun YJ, Liu XM, et al. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF 4 :Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic. J. Colloid Interf. Sci. 2009, 336, 171-175.
42. Li, Z.; Zhang, Y., Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 2006, 45 (46), 7732-7735.
43. Nyk, M.; Kumar, R.; Ohulchanskyy, T.; Bergey, E.; Prasad, P., High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8 (11), 3834-3838.
44. Xiong, L.; Z. Chen,; Q. Tian,; T. Cao,; Xu, C. and Li, F. High Contrast Upconversion Luminescence Targeted Imaging in Vivo Using Peptide-Labeled Nanophosphors. Anal. Chem., 2009, 81, 8687-8694.
45. Wang, M.; Mi, C. C.; Wang, W. X.; Liu, C. H.; Wu, Y. F.; Xu, Z. R.; Mao, C. B. and Xu, S. K., Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF4:Yb,Er Upconversion Nanoparticles. ACS Nano, 2009, 3, 1580-1586.
46. Xiong, L. Q.; Chen, Z. G.; Yu, M. X.; Li, F. Y.; Liu, C. and Huang, C. H., Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials, 2009, 30, 5592-5600.
47. Yu, X. F.; Sun, Z.; Li, M.; Xiang, Y.; Wang, Q. Q.; Tang, F.; Wu, Y.; Cao, Z.; Lia, W., Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials, 2010, 31, 8724.
48. Xiong, L.;Chen, Z.; Tian, Q.; Cao, T.; Xu, C.; Li, F., High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem., 2009, 81, 8687-8694.
49. C. Wang, L. Cheng and Z. Liu, Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials, 2011, 32, 1110-1120.
50 .G. Tian, Z. Gu, L. Zhou, W. Yin, X. Liu, L. Yan, S. Jin, W. Ren, G. Xing, S. Li and Y. Zhao, Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv. Mater., 2012, 24, 1226.
51. Y. Dai, P. a. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai and J. Lin, Up-Conversion Cell Imaging and pHInduced Thermally Controlled Drug Release from NaYF4:Yb3þ/Er3þ@Hydrogel Core-Shell Hybrid Microspheres. ACS Nano, 2012, 6, 3327.
52. C. Wang, H. Tao, C. Liang and L. Zhuang, Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, 32, 6145.,
53. Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X., Samuel Achilefu and Yueqing Gu, In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct. ACS Nano, 2013, 7, 676-688.,
54. Idris, N.; Gnanasammandhan, M.; Zhang, J.; Ho, P.; Mahendran, R.; Zhang, Y., In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18 (10), 1580-1585
55. Park, Y. I.; Kim, H. M.; J. H. Kim,; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W. K.; Choi, S. H.; Park, H. S.; Yoon, S. Y.; Suh, Y. D.; Lee, S. H.; Hyeon, T., Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simultaneous In Vivo Dual-Modal Imaging and Photodynamic Therapy. Adv. Mater., 2012, 24, 5755–5761.
56. Cheng, L.; Yang K.; Li Y.; Zeng X.; Shao M.; Lee S. T. ; Liu Z., Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. biomaterials, 2012, 33, 2215-2222.
57. Jianmin, W.; Michael, J. S., Chitosan hydrogel-capped porous siO2 as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 2009, 19, 733-741.
58. Yoshikawa, H. Y.; Rossetti, F. F.; Kaufmann, S.; Kaindl, T.; Madsen, J.; Engel, U.; Lewis, A. L.; Armes, S. P.; Tanaka, M., Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J. Am. Chem. Soc. 2011, 133 (5), 1367-1374.
59. Ross-Macdonald P,; Coelho P. S.; Roemer T.; Agarwal S.; Kumar A.; Jansen R.; Cheung K. H.; Sheehan A.; Symoniatis D.; Umansky L.; Heidtman M.; Nelson F. K.; Iwasaki H.; Hager K.; Gerstein M.; Miller P.; Roeder G. S.; Snyder M., Large-scale analysis of the yeast genome by transposon tagging and gene disruption, Nature 1999, 397, 413-417.
60. Jean-François, L., Thermo-switchable materials prepared using the OEGMA-platform. Adv. Mater. 2011, 23, 2237-2243.
61. Choi, S. K.; Thomas, T.; Li, M. H.; Kotlyar, A.; Desai, A.; Baker, Jr., J. R., Light-Controlled Release of Caged Doxorubicin from Folate Receptor-Targeting PAMAM Dendrimer Nanoconjugate. Chem. Commun. 2010, 46 (15), 2632-2634.
62. Carling, C. J.; Nourmohammadian, F.; Boyer, J. C.; Branda, N., Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew. Chem. Int. Ed. 2010, 49 (22), 3782-3785.
63. Yan, B.; Boyer, J.-C.; Habault, D.; Branda, N.; Zhao, Y., Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 2012, 134, 16558−16561.
64. Yang, Y.; Shao, Q.; Deng, R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X.; Xing, B., In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 2012, 51 (13), 3125-3129.
65. Sudimack, J.; Lee, R., Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41 (2), 147-162.
66. Kamen, B.; Smith, A., A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv. Drug Deliv. Rev. 2004, 56 (8), 1085-1097.
67. Andrew, M. P.; Peter, K., Synthesis of a new hydrophilic o-nitrobenzyl photocleavable linker suitable for use in chemical proteomics. Tetrahedron Lett. 2005, 46, 8241-8244
68. James, F. C.; Jean, M. J. F., Photogeneration of organic bases from o-nitrobenzyl-derived carbamates. J. Am. Chem. Soc. 1991, 113, 4303-4313.
69. Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A., Light induced drug delivery into cancer cells. Biomaterials 2011, 32 (5), 1377-1386.
70. N. C. Fan, F. Y. Cheng, J. A. Ho, C. S. Yeh, Photocontrolled Targeted Drug Delivery: Photocaged Biologically Active Folic Acid as a Light-Responsive Tumor-Targeting Molecule. Angew. Chem. Int. Ed. 2012, 51, 8806-8810.
71. Qian, H. S.; Zhang, Y., Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 2008, 24 (21), 12123-12125.
72. Li, Z. Q.; Zhang, Y.; Jiang, S., Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 2008, 20 (24), 4765-4769.
73. Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R., Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express 2008, 16 (16), 11907-11914.
74. Greenfield, R.; Kaneko, T.; Daues, A.; Edson, M.; Fitzgerald, K.; Olech, L.; Grattan, J.; Spitalny, G.; Braslawsky, G., Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer research 1990, 50 (20), 6600-6607.
75. He, Y.; Wang, X.; Jin, P.; Zhao, B.; Fan, X., Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochim. Acta. 2009, 72 (4), 876-879.
76. Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Wang, D.; He, S. L.; Zhang, Z. G.; Andersson-Engels, S., Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo Bioimaging without overheating irradiation. ACS Nano 2011, 5 (5), 3744-3757.
77. Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z., Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release 2011, 152 (1), 2-12.
78. Yan B.; Boyer J. C.; Branda N. R.; Zhao, Y., Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc., 2011, 133(39) ,19714–19717.
79. Hergt, R.; Dutz, S.; Muller, R.; Zeisberger, M. Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy. J. Phys.: Condens. Matter 2006, 18, 2919-2934.
80. Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H. Guided Delivery of Polymer Therapeutics Using Plasmonic Phtothermal Therapy. Nano Today, 2012, 7, 158-167.