簡易檢索 / 詳目顯示

研究生: 丁育民
Ting, Yu-Min
論文名稱: 利用三維列印製模技術製作軟骨組織工程支架
Cartilage tissue engineering scaffold by three-dimensional printing mold
指導教授: 張志涵
Chang, Hsien-Chang
葉明龍
Yeh, Min-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 軟骨組織工程支架三維列印
外文關鍵詞: cartilage tissue engineering, scaffold, three-dimensional printing
相關次數: 點閱:183下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 退化性關節炎(Osteoarthritis)是關節軟骨常見的疾病,由於軟骨組織是無血管、神經及淋巴支配的組織,因此受損的軟骨組織之自我修復能力相當有限。軟骨組織工程的基本概念是將細胞取出,並於適合的基材及環境下進行體外培養後,再植入體內,希望透過這樣的方式,獲得近似於天然的軟骨組織,修補軟骨受損部位。組織工程中所使用的支架,其功能在於提供細胞初期貼附,而支架必需具有生物相容性、生物可降解性及適合的力學特性與表面化學特性,促使細胞生長,進而形成組織。本實驗將從猪隻關節中萃取出軟骨細胞,並使用聚乳酸/甘醇酸((Poly (lactide-co-glycolide), PLGA))作為細胞貼附的支架材料,製作方法則採用三維列印法(three-dimensional printing, 3DP)製模技術與鹽析法(salt leaching)結合的方式製作支架,希望製作出不同的外型、尺寸及通道等巨觀特性及含有內部孔洞的支架,達到符合植入軟骨細胞的條件,最後使用H&E及阿辛藍染色法,觀察細胞植入支架後細胞生長及細胞外基質(GAG及蛋白醣)分泌的情形。結果顯示利用三維列印製模技術所製作的PLGA支架之外形,大致能符合原先模具的設計,且具有高孔洞率。將軟骨細胞植入之後,經由染色結果觀察到軟骨細胞貼附在支架內,且隨著天數增加,細胞增生及胞外基質合成的現象也隨之上升。

    Osteoarthritis is a common disease of articular cartilage. Due to the lack of blood vessel, neuron, and lymph in cartilage tissue, the ability of self-repair is limited in damaged cartilage tissue. The fundamental concept of tissue engineering includes cell isolating, cell culturing in vitro, and implanting in vivo. To obtain nearly native articular cartilage tissue and repair the damaged section are currently the main purposes of cartilage tissue engineering. For regeneration of large, complex or structural tissues, scaffolds must possess several structural features providing early cell attachment. The specific characters such as biological compatibility, degradability, and adaptive surface chemical and mechanical properties are important. Degradable polymer, poly(lactide-co-glycolide) (PLGA) was used as scaffold material. Chondrocytes isolated from the cartilage of swine were seeded into the porous PLGA scaffold. Combining the methods of three-dimensional printing (3DP) and salt leaching were used to make porous scaffolds with adjustable geometries, sizes, and channels in this study. The conditions of cell proliferation and the extracellular matrix (ECM) production were further observed by H&E and Alcian blue stain. The results indicated that the shape of PLGA scaffold manufactured by three-dimensional printing could match original design of the mold with high porosity. After seeding chondrocyte, we observed that cell attached on the PLGA scaffold. Moreover, the data also showed that the cell proliferation and ECM production were enhanced with increasing seeding time.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 關節軟骨的結構、成份與功能 1 1.2 軟骨組織的力學性質 4 1.3 受損關節軟骨的修復及臨床上的問題 5 1.4 組織工程之基本概念 7 1-5 軟骨組織工程 8 1-5-1軟骨組織工程的細胞選取 8 1-5-2 組織工程支架的特性與功能 10 1-5-3 支架材料的分類 11 1-5-4 支架的設計 16 1-5-5 支架的製作方法 19 1-6 軟骨組織工程支架目前發展與限制 24 1-7 研究動機與目的 25 第二章 材料與方法 27 2-1 實驗設備 27 2-2 實驗藥品、材料 28 2-3 實驗方法 29 2-3-1 軟骨細胞的萃取與培養 29 2-3-2 支架設計、製作與孔洞率計算 32 2-3-3 細胞種植 37 2-3-4 實驗結果觀察 38 2-4 實驗流程圖 44 第三章 結果 45 3-1 軟骨細胞的初代培養及成長趨勢 45 3-2 三維列印製模 47 3-3多孔性PLGA支架及支架孔洞率 49 3-4 軟骨細胞在支架上的生長情形 51 3-5 軟骨細胞胞外基質的合成表現 57 第四章 討論 62 4-1 實驗結果討論 62 4-1-1 初代軟骨細胞之培養 62 4-1-2 三維列印製模 63 4-1-3 PLGA支架孔洞性 64 4-1-4 軟骨細胞培養於立體多孔性支架 67 4-2 三維列印模具製作多孔性支架製程討論 68 4-2-1 模具表面處理 68 4-2-2 PLGA混合溶液與氯化鈉的調配比例與方法 70 4-2-3 模具設計 71 4-3 實驗限制 73 4-3-1 支架製作 73 4-3-2 細胞活性與胞外基質合成表現之定量 74 4-4 未來展望 74 4-4-1 改善支架孔洞性 74 4-4-2 評估支架結構及表面改質對軟骨細胞的影響 74 4-4-3 生物反應器 75 4-4-4 準確定量 75 4-4-5 細胞來源 75 4-4-6 利用SEM觀察細胞型態 76 第五章 結論 77 參考文獻 78

    1. Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope 116 (10): 1829-34, 2006.
    2. Chia SH, Schumacher BL, Klein TJ, Thonar EJ, Masuda K, Sah RL, Watson D. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method. Laryngoscope 114 (1): 38-45, 2004.
    3. Draghi L, Resta S, Pirozzolo MG, Tanzi MC. Microspheres leaching for scaffold porosity control. J Mater Sci Mater Med 16 (12): 1093-7, 2005.
    4. Endres M, Neumann K, Schroder SE, Vetterlein S, Morawietz L, Ringe J, Sittinger M, Kaps C. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects. Tissue Cell 39 (5): 293-301, 2007.
    5. Giordano GG, Thomson RC, Ishaug SL, Mikos AG, Cumber S, Garcia CA, Lahiri-Munir D. Retinal pigment epithelium cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 34 (1): 87-93, 1997.
    6. Guilak F, Butler DL, Goldstein SA, Mooney DJ. Functional tissue engineering. Springer ed. New York, 2003.
    7. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives. J Biomater Sci Polym Ed 12 (1): 107-24, 2001.
    8. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22 (7): 354-62, 2004.
    9. Kimura T, Yasui N, Ohsawa S, Ono K. Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop Relat Res (186): 231-9, 1984.
    10. Kuo CK, Li WJ, Mauck RL, Tuan RS. Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18 (1): 64-73, 2006.
    11. Kuo YC, Leou SN. Effects of composition, solvent, and salt particles on the physicochemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds. Biotechnol Prog 22 (6): 1664-70, 2006.
    12. Lee M, Dunn JCY, Wu BM. Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26 (20): 4281-4289, 2005.
    13. Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly( -hydroxy acids) in aqueous media. Journal of materials science 198-206, 1990.
    14. Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res 59 (4): 676-81, 2002.
    15. Mahmoudifar N, Doran PM. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26 (34): 7012-7024, 2005.
    16. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64 (3): 460-6, 1982.
    17. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17 (14): 1417-22, 1996.
    18. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater 6 (2): 162-7, 2007.
    19. Munirah Sb, Soon K, Ruszymah I, Gilson K. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study. Journal of Orthopaedic Surgery and Research 3 (1): 17-27, 2008.
    20. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P. Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58 (2): 300-22, 2006.
    21. Newman AP. Articular cartilage repair. Am J Sports Med 26 (2): 309-24, 1998.
    22. Park K, Huang J, Azar F, Jin RL, Min BH, Han DK, Hasty K. Scaffold-free, engineered porcine cartilage construct for cartilage defect repair--in vitro and in vivo study. Artif Organs 30 (8): 586-96, 2006.
    23. Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem 46: 73–84, 2007.
    24. Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36 (4-5): 539-68, 2007.
    25. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74 (2): 782-8, 2005.
    26. Suh SW, Shin JY, Kim J, Kim J, Beak CH, Kim DI, Kim H, Jeon SS, Choo IW. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. Asaio J 48 (5): 460-4, 2002.
    27. Torzilli PA, Grigiene R, Borrelli J, Jr., Helfet DL. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J Biomech Eng 121 (5): 433-41, 1999.
    28. Watt FM. Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 89 ( Pt 3): 373-8, 1988.
    29. Wu L, Jing D, Ding J. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 27 (2): 185-191, 2006.
    30. Yeong W-Y, Chua C-K, Leong K-F. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping Journal: 229–237, 2006.
    31. Yeong WY, Chua CK, Leong KF. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping Journal: 229–237, 2006.
    32. 秦弘昇. 利用動態靜水壓反應器來刺激關節軟骨細胞之胞外基質合成, The stimulation of extra cellular matrix synthesis of articular chondrocytes by hydrodynamic bioreactor, 國立成功大學, 2008.
    33. 劉炯良, 郭俊榕, 李進送, 林鴻儒. 高孔隙PLGA支架之製備與物性評估. Chia-Nanannual Bulletin 29: 1 -9, 2003.

    下載圖示 校內:2009-08-21公開
    校外:2009-08-21公開
    QR CODE