簡易檢索 / 詳目顯示

研究生: 吳俊翰
Wu, Jyun-Han
論文名稱: 網路資料為基之產品演化歷程挖掘與預測方法研發
Development of Method for Web Information-based Product Evolution Process Mining and Prediction
指導教授: 陳裕民
Chen, Yuh-Min
共同指導教授: 陳育仁
Chen, Yuh-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 51
中文關鍵詞: 網路資料產品演化歷程探勘產品設計與開發
外文關鍵詞: Web information, product evolution, course mining, product design and development
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今企業競爭激烈的環境中,產品設計與開發扮演著企業成敗的重要角色,而產品設計與開發之核心在於企業是否瞭解消費者需求。過去企業為了瞭解消費者需求往往透過費時費力的大量問卷施測以及統計分析;但隨著網際網路發達與社群媒體的普及,越來越多消費者會在網路社群媒體上留下對產品的感受與訴求,這也意味著企業有著另一種不同的管道可以更有效且客觀地暸解消費者對於產品的需求。因此,如何有效地協助企業從大量的網路社群媒體資料中分析出有利於產品設計與開發之有價值的資訊實為現今企業提昇產品市場競爭優勢的重要研究課題。
    因此,本研究主要目的在於利用網路社群媒體上產品之相關文章與評價內容發展一產品演化歷程挖掘與預測機制,以協助企業快速且正確地掌握產品的發展趨勢,進而有效地提供產品設計與開發時之重要參考資訊。針對上述目的,本研究主要研究項目包括: (i)網路資訊為基之產品演化歷程挖掘與預測流程設計,(ii) 網路資訊為基之產品演化歷程挖掘與預測方法發展以及(iii)網路資訊為基之產品演化歷程挖掘與預測系統實作與驗證。

    In the fiercely competitive environment, product design and development plays a critical role in the success of an enterprise, and the core of product design and development lies in the enterprise understanding consumer needs. Enterprises used to understand consumer needs through time and strength consuming questionnaire survey and statistical analyses; however, with the advance of the Internet and the popularity of social media, more and more consumers would leave the perception and appeal on online social media. It reveals a different channel for an enterprise more effectively and objectively understanding consumer needs for products. In this case, effectively assisting enterprises in analyzing valuable information beneficial to product design and development from a large amount of online social media data is an important research issue for enterprises promoting the competitive advantage in the product market.
    This study develops a product evolution course mining and prediction mechanism by using the product-related articles and eWOMs on online social media to assist enterprises in rapidly and accurately grasping the development trend of products to further effectively provide important reference for the product design and development. This objective can be achieved by performing the following tasks: (i) designing a web information-based product evolution course mining and prediction process, (ii) developing a web information-based product evolution course mining and prediction method, and (iii) implementing and verifying web information-based product evolution course mining and prediction system.

    摘要 I SUMMARY II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章、緒論...1 1.1 研究背景...1 1.2 研究動機...2 1.3 研究目的...3 1.4 研究問題分析...3 1.5 研究項目與方法...3 1.6 研究發展程序...6 第二章、相關文獻與技術探討...7 2.1 研究領域探討...7 2.2 相關技術探討...8 第三章、網路資料為基之產品演化歷程挖掘與預測方法流程設計...16 3.1 產品演化歷程挖掘方法程序設計...17 3.2 產品演化歷程預測方法程序設計...18 第四章、網路資料為基之產品演化歷程挖掘與預測方法設計...21 4.1 產品/產品特徵之文章與評價擷取...21 4.2 產品/產品特徵之文章與評價前處理...23 4.3 產品/產品特徵之時序關聯項目萃取...25 4.4 產品之重要關聯項目辨識(產品特徵之演變項目預測)...27 4.5 產品/產品特徵之同位階項目辨識...29 第五章、實作與驗證...33 5.1 實作環境介紹...33 5.2 實作結果...34 5.3 實驗結果驗證與討論...42 第六章、結論與未來展望...44 6.1 結論...44 6.2 未來展望...44 參考文獻...46

    1. Chang, J. H., Mining weighted sequential patterns in a sequence database with a time-interval weight. Knowledge-Based Systems, Vol. 24(1), pp.1-9, 2011.
    2. Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., Zanasi, A., International Business Machines Corporation(San Jose, California). & International Technical Support Organization (San Jose, California). Discovering data mining: from concept to implementation. Upper Saddle River, NJ: Prentice Hall, Vol. 1, 1998.
    3. Changqin Quan and Fuji Ren, Unsupervised product feature extraction for feature-oriented opinion determination, Information Sciences, Vol. 272(10), pp16-28, 2014.
    4. C.Y. Wang, Sentiment Detection of Micro-blogging Short Texts via Contextual, Social and Responsive Information, M.S. degree, National Taiwan University, Electrical Engineering and Computer Science, 2011.
    5. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P., From data mining to knowledge discovery in databases. AI magazine, Vol. 17(3), pp. 37, 1996.
    6. Feng Zhou, Roger Jianxin Jiao and Julie S. Linsey, Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews, Journal of Mechanical Design, vol.137, 2015.
    7. Goldsmith, R. E. and Horowitz, D. ,Measuring Motivations for Online Opinion Seeking, Journal of Interactive Advertising , Vol. 6(2), pp. 2-14, 2006.
    8. Ghani R., Probst K., Liu Y., Krema M., and Fano A., Text mining for product attribute extraction. SIGKDD Explorations, Vol.8(1), pp. 41–48, 2006.
    9. Gerard, S., & Michael, J. M., Introduction to modern information retrieval. McGraw-Hill, 1983.
    10. Hong, C. F., Lin, M. H., Yang, H. F., & Huang, C. J., A novel chance model for building innovation diffusion scenario. In Systems Man and Cybernetics (SMC), 2010 IEEE International Conference, pp. 3845-3852, 2010.
    11. Hutto, C. J., & Gilbert, E., Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth International AAAI Conference on Weblogs and Social Media, 2014.
    12. Han, J., & Kamber, M., Data mining: Concepts and techniques. China Machine Press, Vol. 8, pp.3-6, 2001.
    13. Hongyan Liu, Jun He, Tingting Wang and Wenting Song, Xiaoyang Du, Combining user preferences and user opinions for accurate recommendation, Electronic Commerce Research and Applications, Vol. 12(1), pp14-23, 2013.
    14. Hu M., and Liu B., Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 8–17, 2004.
    15. H. Saif, Sentiment Analysis of Microblogs, Technical Report, 2012.
    16. Hennig-Thurau, K.P.G. T., and D. D.Gremler, Understanding Relationship Marketing Outcomes-An Integration of Relational Benefits and Relationship Quality. Journal of Service Research Vol. 4(3), pp. 230-247, 2002.
    17. Hanson, W., Principles of internet marketing, Cincinnati, Ohio: South-Western college publishing(IS), South-Western publishing, 2000.
    18. Harrison-Walker and L. Jean, The Measurement of Word-of-Mouth Communication and an Investigation of Service Quality and Customer Commitment as Potential Antecedents. Journal of Service Research, Vol.4(1), pp.60-75, 2001.
    19. Hao Wang, Yukio Ohsawa and Yoko Nishihara, Innovation support system for creative product design based on chance discovery, Expert Systems with Applications, Vol.39, pp. 4890-4897, 2012.
    20. Jian Jin, Ping Ji and C.K. Kwong, What makes consumers unsatisfied with your products: Review analysis at a fine-grained level, Engineering Applications of Artificial Intelligence, vol.47, pp. 38-48, 2016.
    21. Jian Jin, Ping Ji and RuiGu, Identifying comparative customer requirements from product online reviews for competitor analysis, Engineering Applications of Artificial Intelligence, Vol.49, pp. 61-73, 2016.
    22. Kim, S., Park, S., Won, J., & Kim, S., Privacy preserving data mining of sequential patterns for network traffic data, Information Sciences, Vol.178(3), pp.694-713, 2008.
    23. Liu B., Hu M., and Cheng J., Opinion observer: Analyzing and comparing opinionson the Web. In Proceedings of the 14th International Conference on World Wide Web, pp. 342–351, 2005.
    24. Peter D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews . Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, pp. 417-424, 2002.
    25. Pai, M.Y., et al., Electronic Word of Mouth Analysis for Service Experience. Expert Systems with Applications. Vol. 40(6), 2012.
    26. Popescu A., and Etzioni O. P., Extracting product features and opinions from reviews. Natural Language Processing and Text Mining, pp. 9–28, 2007.
    27. Richard Sproat, Chilin Shih., A Statistical Method for Finding Word Boundaries in Chinese Text. Computer Processing of Chinese and Oriental Languages, Vol. 4(4), pp. 336-351, 1990.
    28. Simoudis, E., Han, J., & Fayyad, U. Proceedings of the second international conference on knowledge discovery & data mining, AAAI Press, Menlo Park, CA (United States), 1996.
    29. Salton, G., & Buckley, C. Term-weighting approaches in automatic text retrieval. Information processing & management, Vol. 24(5), pp. 513-523, 1988.
    30. Sandra Garcia Esparza, Michael P. O’Mahony and Barry Smyth, Mining the real-time web A novel approach to product recommendation, Knowledge-Based Systems, Vol. 29, pp. 3-11, 2012.
    31. Scherer, I.K. and P.E. (Eds.), Expression and the nature of emotion. Approaches to emotion. Hillsdale NJ: Erlbaum., pp. 319-344, 1984.
    32. Sheu, J., A hybrid fuzzy-optimization approach to customer grouping-based logistics distribution operations, Applied Mathematical Modelling, Vol. 31(6), pp. 1048-1066, 2007.
    33. Srikant, R., & Agrawal, R., Mining generalized association rules. Future Generation Computer Systems, Vol. 13(2), pp. 161-180, 1997.
    34. Sakakibara, T., & Ohsawa, Y., Gradual-increase extraction of target baskets as preprocess for visualizing simplified scenario maps by KeyGraph. Soft Computing, Vol. 11(8), pp. 783-790, 2007.
    35. Tang, H., S. Tan, and X. Cheng, A survey on sentiment detection of reviews. Expert Systems with Applications. Vol. 36(7), pp.10760-10773, 2009.
    36. Turney, P.D., Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews, in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics: Philadelphia, Pennsylvania. pp. 417-424, 2002.
    37. Tobias Schoenherr and Stephan M. Wagner, Supplier involvement in the fuzzy front end of new product development: An investigation of homophily, benevolence and market turbulence, International Journal of Production Economics, Vol.180, pp.101-113, 2016.
    38. Westbrook, R.A., Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, Vol. 24, pp. 258-270, 1987.
    39. Wenhao Zhang, Hua Xu and Wei Wan, Weakness Finder: Find product weakness from Chinese reviews by using aspects, Expert Systems with Applications, Vol. 39(11), pp. 10283–10291, 2012.
    40. X. Wan, Using Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis, Proc. Conf. Empirical Methods in Natural Language Processing, pp. 553-561, 2008.
    41. Zahra Alizadeh Afrouzy, Seyyed Hadi Nasseri, Iraj Mahdavi and Mohammad Mahdi Paydar, A fuzzy stochastic multi-objective optimization model to configure a supply chain considering new product development, Applied Mathematical Modelling, Vol.40, pp. 7545-7570, 2016.
    42. Zhen, H., Kuiyu, C., Jung-Jae, K., & Yang, C. C., Identifying Features in Opinion Mining via Intrinsic and Extrinsic Domain Relevance. Knowledge and Data Engineering, IEEE Transactions, Vol. 26(3), pp. 623-634, 2014.
    43. Zhai, Z., et al., Exploiting effective features for chinese sentiment classification. Expert Systems with Applications, Vol. 38(8), pp.9139-9146, 2011.
    44. 陳彥璋, 中文網路口碑為基之產品標竿分析方法研究, 國立成功大學, pp. 1-68, 2014.
    45. 洪儷瑜, 陳佩盈, 中文句型類型整理. http://www.rm.spc.ntnu.edu.tw:8080/upload/prog/%E4%B8%AD%E6%96%87%E5%8F%A5%E5%9E%8B%E9%A1%9E%E5%9E%8B%E6%95%B4%E7%90%86.pdf, 2005.
    46. 馬可丁, 行銷學(行銷管理學), 鼎文出版, 2014.
    47. 高聖傑, 詞性組合輔助之中文網路口碑評價分析技術研發, 國立成功大學, pp. 1-48, 2014.
    48. 徐銘謙, 產品演化中造形因素與生態性擇相關性之研究, 國立台灣科技大學, pp. 1-173, 2004.
    49. 曾志偉, 中文網路口碑之消費者觀點獲取方法研究, 國立成功大學, pp1-69, 2013.
    50. 游和正, 領域相關詞彙及性分析及文件情緒分類之研究, 台灣大學, pp. 57, 2012.
    51. 簡明輝, 消費者行為, 新文京出版, 2014.
    52. CKIP中文斷詞系統,http://ckipsvr.iis.sinica.edu.tw/

    下載圖示 校內:2022-09-01公開
    校外:2022-09-02公開
    QR CODE