簡易檢索 / 詳目顯示

研究生: 王柏舜
Wang, Po-Shun
論文名稱: 探討新穎長鏈非編碼RNA在三陰性乳腺癌轉移之鑑定及功能性分析
Novel long non-coding RNAs promote metastasis in triple negative breast cancer
指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 181
中文關鍵詞: 三陰性乳癌遠端轉移長鏈非編碼核醣核酸小分子核醣核酸鋅指結構E-Box-結合同源框1基質金屬蛋白酶9
外文關鍵詞: TNBC, metastasis, lncRNAs, miRNAs, ZEB1, MMP9
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遠端轉移為癌細胞由原發處轉移至遠端臟器之動態過程。臨床上,三陰性乳癌之病患因遠端轉移發生之機率高,而導致其預後結果不佳。三陰性乳癌之遠端轉移主要發生於肺臟、腦、肝臟及骨骼等重要器官。長鏈非編碼核醣核酸是一群缺乏蛋白質轉譯能力,長度超過200個核苷酸之轉錄本。近期研究證實其在乳癌遠端轉移之過程中扮演重要角色。然而,長鏈非編碼核醣核酸於調控三陰性乳癌遠端轉移之詳細機轉仍未明。本研究藉由RNA測序技術與功能性鑑定發現長鏈非編碼核醣核酸ZNF469-3高度表現於具肺轉移能力之LM2-4175細胞株。過度表現長鏈非編碼核醣核酸ZNF469-3於細胞中,不僅能促進細胞移行、侵犯能力及癌幹細胞特性,亦可藉由小鼠模式發現其增強肺轉移之機率。此外,長鏈非編碼核醣核酸ZNF469-3可與小分子核醣核酸574-5p進行交互作用,並作為誘餌以干擾其調控鋅指結構E-Box-結合同源框1之表現。更重要的是,三陰性乳癌病患之組織染色分析結果發現,合併高表現長鏈非編碼核醣核酸ZNF469-3和鋅指結構E-Box-結合同源框1,與腫瘤復發於肺臟之間有正相關性。
    另外,我們亦發現長鏈非編碼核醣核酸SLITRK6-6高度表現於具侵犯能力之MDA-MB-231 1-5細胞株。過度表現長鏈非編碼核醣核酸SLITRK6-6於細胞中,不但能強化其移行及侵犯能力,亦可於小鼠模式中發現其提升腦轉移之機率。此外,長鏈非編碼核醣核酸SLITRK6-6除可與小分子核醣核酸483-3p進行交互作用外,亦能增強基質金屬蛋白酶9之蛋白表現及其酵素活性。值得注意的是,由病患之組織染色分析結果發現,高度表現長鏈非編碼核醣核酸SLITRK6-6與腫瘤復發於肝臟之間有正相關性。綜上所述,本篇研究結果顯示上述新穎之長鏈非編碼核醣核酸皆具有促進三陰性乳癌細胞遠端轉移之能力,並作為腫瘤復發之預後標記的可能性。

    Triple-negative breast cancer (TNBC) lack expressions of estrogen receptors (ER), progesterone receptors (PR) as well as human epidermal growth factor receptor 2 (HER2) and importantly, TNBC tumors tend to metastasize to the lungs, brain, liver and bone in patients, which contribute to poor prognosis and 5-year survival. Recently, long non-coding RNAs (lncRNAs) represent a class of non-protein-coding transcripts with ≥ 200 nucleotides (nt) and have been revealed as crucial modulators in metastatic cancers. Nonetheless, the detailed mechanisms of how lncRNAs involve in TNBC invasion and metastasis remain elusive. In this study, RNA sequencing (RNA-seq) and functional characterization found that linc-ZNF469-3 was significantly upregulated in lung-metastatic LM2-4175 cells and linc-ZNF469-3 overexpression enhanced cell migration, invasion and stemness properties as well as promoted lung metastasis in mice. Mechanistically, linc-ZNF469-3 interacted with miR-574-5p and functioned as a decoy to regulate ZEB1 expression. More importantly, concurrent high linc-ZNF469-3 and ZEB1 expressions significantly correlated with tumor recurrence in TNBC patients with lung metastasis.
    In addition, high linc-SLITRK6-6 expression was also found in highly invasive MDA-MB-231 1-5 cells and overexpression of linc-SLITRK6-6 enhanced both migration and invasion abilities in vitro as well as increased the incidence of brain metastasis in vivo. Furthermore, our data showed that linc-SLITRK6-6 not only interacted with miR-483-3p but also enhanced MMP9 expression and its gelatinase activity. Notably, significantly high level of linc-SLITRK6-6 showed correlation with tumor recurrence in TNBC patients with liver metastasis. Taken together, our findings suggest that both linc-ZNF469-3 and linc-SLITRK6-6 can promote organotropic metastasis of TNBC through context-dependent signaling axis and have potential as potential prognostic markers for TNBC patients in the future.

    Index Chinese Abstract......I Abstract......III Acknowledgement......V Index......VI Table List......IX Figure List......X Appendix List......XV Abbreviation List......XVI Chapter 1 Introduction......1 1-1 Triple-negative breast cancer......2 1-2 The metastatic cascade and organotropic metastasis......3 1-3 Long non-coding RNA biogenesis and functions......5 1-4 Role of cancer-related lncRNAs in breast cancer......6 1-5 Specific aims......8 Chapter 2 Materials and Methods......10 2-1 Cell lines and reagents......11 2-2 Patients and clinical specimens......12 2-3 Stable cell line generation......12 2-4 RNA sequencing and lncRNA annotation pipeline......13 2-5 RNA extraction, cDNA synthesis and quantitative real-time PCR......14 2-6 Migration and invasion assays......14 2-7 Proliferation assay and soft-agar assay......15 2-8 Western blot analysis......15 2-9 Gelatin zymography......16 2-10 In vivo metastasis assay......17 2-11 Immunohistochemistry......18 2-12 In situ hybridization......18 2-13 MS2-tagged RNA affinity purification......19 2-14 Simulation of 3D modeling......19 2-15 Luciferase reporter assay......20 2-16 Statistical analysis......20 2-17 Primers used in this study......21 2-18 Antibodies used in this study......30 Chapter 3 Results......31 3-1 Identification of novel oncogenic lncRNAs involved in TNBC invasion and organotropic metastasis......32 3-2 Linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in TNBC......34 3-2-1 High linc-ZNF469-3 expression enhances TNBC migration, invasion and stemness property......34 3-2-2 High linc-ZNF469-3 expression promotes lung metastasis of TNBC in vivo......35 3-2-3 High linc-ZNF469-3 expression correlates with tumor recurrence in TNBC patients......36 3-2-4 Linc-ZNF469-3 physically interacts with miR-574-5p and acts as decoys to regulate ZEB1 expression......37 3-2-5 MiR-574-5p downregulation was found in lung-metastatic lesions of mice and TNBC tumors but showed no correlation with lung metastasis in patients......39 3-2-6 Concurrent high linc-ZNF469-3 and ZEB1 expressions correlate with tumor recurrence in TNBC patients......39 3-3 Linc-SLITRK6-6 promotes brain metastasis through MMP9 activation in TNBC......40 3-3-1 MDA-MB-231 1-5 cells exhibit high invasive and metastatic abilities......40 3-3-2 High linc-SLITRK6-6 expression enhances TNBC migration and invasion......42 3-3-3 High linc-SLITRK6-6 expression promotes brain metastasis of TNBC in vivo......43 3-3-4 Linc-SLITRK6-6 interacts with miR-483-3p in the Ago2-containing RISC......44 3-3-5 Linc-SLITRK6-6 overexpression enhances MMP9 expression and its gelatinase activity......45 3-3-6 High linc-SLITRK6-6 expression correlates with tumor recurrence in TNBC patients......46 Chapter 4 Discussion......47 Chapter 5 Conclusion......53 References......55 Tables......67 Figures......78 Appendix......152 Curriculum Vitae......180

    References
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68: 7-30.
    2. Polyak K. Heterogeneity in breast cancer. J Clin Invest 2011; 121: 3786-3788.
    3. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160-1167.
    4. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61-70.
    5. Marcom PK, Isaacs C, Harris L, Wong ZW, Kommarredday A, Novielli N et al. The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat 2007; 102: 43-49.
    6. Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol 2008; 26: 1059-1065.
    7. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 2007; 109: 1721-1728.
    8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007; 13: 4429-4434.
    9. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer – current status and future directions. Ann Oncol 2009; 20: 1913-1927.
    10. Wahba HA, EL-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 2015; 12: 106-116.
    11. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275-1281.
    12. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363: 1938-1948.
    13. Tseng LM, Hsu NC, Chen SC, Lu YS, Lin CH, Chang DY et al. Distant metastasis in triple-negative breast cancer. Neoplasia 2013; 60: 290-294.
    14. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331: 1559-1564.
    15. Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013; 155: 750-764.
    16. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529: 298-306.
    17. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274-284.
    18. Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012; 2012: 306879.
    19. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19: 1423-1437.
    20. Obenauf AC, Massagué J. Surviving at a distance: organ-specific metastasis. Trends Cancer 2015; 1: 76-91.
    21. Chen W, Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2018; 2: 4.
    22. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537-549.
    23. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518-524.
    24. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147-152.
    25. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459: 1005-1009.
    26. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159.
    27. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145-166.
    28. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26-46.
    29. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature 2012; 482: 339-346.
    30. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17: 47-62.
    31. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861-874.
    32. Wapinski O, Chang HY. Long non-coding RNAs and human disease. Trends Cell Biol 2011; 21: 354-361.
    33. Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 2014; 14: 752-761.
    34. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15: 7-21.
    35. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013; 108: 2419-2425.
    36. Huarte M. The emerging role of lncRNAs in cancer. Nat Med 2015; 21: 1253-1261.
    37. Schimtt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016; 29: 452-463.
    38. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Invest 2016; 126: 2775-2782.
    39. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: A new paradigm. Cancer Res 2017; 77: 3965-3981.
    40. Chen Y, Zhou J. LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab Brain Dis 2017; 32: 281-291.
    41. Wan P, Su W, Zhou Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol 2017; 54: 2012-2021.
    42. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res 2015; 116: 737-750.
    43. Frank S, Aguirre A, Hescheler J, Kurian L. A lncRNA perspective into (re)building the heart. Front Cell Dev Biol 2016; 4: 128.
    44. Lorenzen JM, Thum T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 2016; 12: 360-373.
    45. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904-914.
    46. Huarte M, Guttman M, Feldser D, Garber M. Koziol MJ, Kenzelmann-Broz D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142: 409-419.
    47. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH et al. Large intergenic noncoding RNA-ROR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010; 42: 1113-1117.
    48. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3: ra8.
    49. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNA regulates tumour biology. Nature 2010; 465: 1033-1038.
    50. Hung T, Wang Y, Lin MF, Koeagl AK, Kotake Y, Grant GD et al. Extensive and coordinated transcription of noncoding RNA within cell-cycle promoters. Nat Genet 2011; 43: 621-629.
    51. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120-124.
    52. Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 2011; 474: 390-394.
    53. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689-693.
    54. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K et al. Scaffold function of long noncoding RNA HOTAIR in protein ubiquitination. Nat Commun 2013; 4: 2939.
    55. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010; 38: 662-674.
    56. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011; 30: 1956-1962.
    57. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 2007; 12: 215-229.
    58. Mestdagh P, Fredlund E, Pattyn F, Rihani A, Van Maerken T, Vermeulen J et al. An integrative genomics screen uncovers ncRNAs T-UCR functions in neuroblastoma tumours. Oncogene 2010; 29: 3583-3592.
    59. Mendell JT, Targeting a long noncoding RNA in breast cancer. N Engl J Med 2016; 374: 2287-2289.
    60. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-1076.
    61. Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Orom UA et al. Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 2013; 32: 2672-2684.
    62. Redis RS, Sieuwerts AM, Look MP, Tudoran O, Ivan C, Spizzo R et al. CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. Oncotarget 2013; 4: 1748-1762.
    63. Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 2014; 159: 1110-1125.
    64. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 2015; 6: 29209-29223.
    65. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X et al. A cytoplasmic NF-ĸβ interacting long noncoding RNA blocks Iĸβ phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27: 370-381.
    66. Wu W, Chen F, Cui X, Yang L, Chen J, Zhao J et al. LncRNA NKILA suppresses TGF-β-induced epithelial-mesenchymal transition by blocking NF-ĸβ signaling in breast cancer. Int J Cancer 2018; doi: 10.1002/ijc.31605.
    67. Wang S, Liang K, Hu Q, Li P, Song J, Yang Y et al. JAK2-binding long noncoding RNA promotes breast cancer brain metastasis. J Clin Invest 2017; 127: 4498-4515.
    68. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z et al. Long noncoding LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 2016; 23: 522-530.
    69. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L et al. The LINK-A lncRNA activates normoxic HIF1α signaling in triple-negative breast cancer. Nat Struct Mol Biol 2016; 18: 213-224.
    70. Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C et al. The LINK-A lncRNA interacts with PtdIns (3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 2017; 19: 238-251.
    71. Li C, Wang S, Xing Z, Lin A, Liang K, Song J et al. A ROR1-HER3-lncRNA signaling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 2017; 19: 106-119.
    72. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.
    73. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105-1111.
    74. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511-515.
    75. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915-1927.
    76. Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee C et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res 2013; 73: 406-416.
    77. Hsu CY, Lin CH, Jan YH, Su CY, Yao YC, Cheng HC et al. Huntingtin-interacting protein-1 is an early-stage prognostic biomarker of lung adenocarcinoma and suppresses metastasis via Akt-mediated epithelial- mesenchymal transition. Am J Respir Crit Care Med 2016; 193: 869-880.
    78. Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis 2005; 26: 513-23.
    79. Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 2012; 58: 81-87.
    80. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res 2012; 40: e112.
    81. Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016; 103: 120-127.
    82. Chuang YC, Chang CH, Lin JT, Yang CN. Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure-activity relationship analysis and molecular dynamics simulations. Mol Biosyst 2015; 11: 723-733.
    83. Lee CC, Chuang YC, Liu YL, Yang CN. A molecular dynamics simulation study for variant drug responses due to FMS-like tyrosine kinase 3 G697R mutation. Rsc Advances 2017; 7: 29871-29881.
    84. Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesomeple J et al. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 2015; 43: D174-180.
    85. Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomic methods to distinguish protein and non-coding regions. Bioinformatics 2011; 27: i275-282.
    86. Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 2011; 179: 2-11.
    87. Lee S, Seo HH, Lee CY, Lee J, Shin S, Kim SW et al. Human Long Noncoding RNA Regulation of Stem Cell Potency and Differentiation. Stem Cells Int 2017; 2017: 6374504.
    88. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38: 323-332.
    89. Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A 2016; 113: E1881-1889.
    90. Xu Q, Deng F, Qin Y, Zhao Z, Wu Z, Xing Z et al. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death Dis 2016; 7: e2254.
    91. Zhou M, Hou Y, Yang G, Zhang H, Tu G, Du YE et al. LncRNA-Hh strengthen cancer stem cells generation in Twist-positive breast cancer via activation of Hedgehog signaling pathway. Stem Cells 2016; 34: 55-66.
    92. Yuan SX, Wang J, Yang F, Tao QF, Zhang J, Wang LL et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology 2016; 63: 499-511.
    93. Di Cecilia S, Zhang F, Sancho A, Li S, Agulió F, Sun Y et al. RBM5-AS1 is critical for self-renewal of colon cancer stem-like cells. Cancer Res 2016; 76: 5615-5627.
    94. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846-7854.
    95. Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W et al. Phosphoglucose isomerase/autocrine motility factor mediates epithelial- mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 2011; 71: 3400-3409.
    96. van Kampen JGM, van Hooij O, Jansen CF, Smit FP, van Noort PI, Schulta I et al. miRNA-520f reverses epithelial-to-mesenchymal transition by targeting ADAM9 and TGFBR2. Cancer Res 2017; 77: 2008-2017.
    97. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis 2014; 5: e1287.
    98. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505: 344-352.
    99. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 2016; 17: 272-283.
    100. Cui Z, Tang J, Chen J, Wang Z. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer Cell Int 2014; 14: 47.
    101. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget 2015; 6: 44609-44622.
    102. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S et al. MicroRNA-574-5p promotes metastasis of non-small cell lung cancer by targeting PTPRU. Sci Rep 2016; 20: 35714.
    103. Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011; 41: 271-290.
    104. Stuelten CH, DaCosta Byfield S, Arany RR, Karpova TS, Stetler-Stevenson WG, Roberts AB. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 2005; 118: 2143-2153.
    105. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteases: regulators of the tumor microenvironment. Cell 2010; 141: 52-67.
    106. Arnold SM, Young AB, Munn RK, Patchell RA, Nanayakkara N, Markesbery WR. Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in paired primary tumors and brain metastasis. Clin Cancer Res 1999; 5: 4028-4033.
    107. Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 2005; 22: 237-246.
    108. Xing F, Sharma S, Liu Y, Mo YY, Wu K, Zhang YY et al. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α. Oncogene 2015; 34: 4890-4900.
    109. Brufsky AM, Mayer M, Rugo HS, Kaufman PA, Tan-Chiu E, Tripathy D et al. Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 2011; 17: 4834-4843.
    110. Witzel I, Oliveira-Ferrer L, Pantel K, Müller V, Wikman H. Breast cancer brain metastasis: biology and new clinical perspectives. Breast Cancer Res 2016; 18: 8.
    111. Qi P, Zhou XY, Du X. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 2016; 15: 39.
    112. Merola R, Tomao L, Antenucci A, Sperduti I, Sentinelli S, Masi S et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: a National Cancer Institute experience. J Exp Clin Cancer Res 2015; 34:15.
    113. Jin C, Shi W, Wang F, Shen X, Qi J, Cong H et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget 2016; 7: 51763-51772.
    114. Jiang YZ, Liu YR, Xu XE, Jin X, Hu X, Yu KD et al. Transcriptome analysis of triple-negative breast cancer reveals and integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res 2016; 76: 2105-2114.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE