簡易檢索 / 詳目顯示

研究生: 呂念祐
Lu, Nien-Yu
論文名稱: 應用近紅外光譜儀探討糖尿病患組織氧合狀態
Investigation of Tissue Oxygenation in Diabetics Using Near Infrared Spectroscopy
指導教授: 陳家進
Chen, Jia-Jin J
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 44
中文關鍵詞: 低頻率震盪近紅外光譜儀血管調控組織氧合度糖尿病
外文關鍵詞: Low-frequency oscillations (LFOs), Near-infrared spectroscopy (NIRS), Vascular regulation, Tissue oxygenation, Diabetes
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管內皮失能是造成糖尿病患在微血管病變的主要因素之一,嚴重的話有可能導致糖尿病患下肢潰瘍甚至是截肢。近紅外光譜儀屬於一種非侵入性的血液動力學監測系統,其優點在於可以讓受測者在動態活動下即時監控帶氧及去氧血紅素之濃度變化。相關的研究文獻證實經由探討血液動力學的訊號內頻率組成成分的改變,可以一窺相關疾病的致病機制。本研究目的在於評估血管調控功能在不同血糖族群的影響下有何變化,期望能為有微血管病變風險的糖尿病患提供更多相關資訊,減少不可挽回傷害的造成。實驗受測者將分為糖尿病、糖尿病前期與正常血糖組,且分別從休息狀態下記錄20分鐘內大腦前額區與小腿腓腸肌的血氧變化及透過重複的等長膝關節伸展運動下量測大腿股外側肌的血氧變化。藉由頻譜分析(Welch’s method)歸納出三個主要的低頻段,其中包含:內皮細胞相關的血管調控(0.005-0.02 Hz)、交感神經支配下的血管調控(0.02-0.06 Hz)與血管平滑肌內的肌源性反應(0.06-0.15 Hz)。研究結果顯示在休息狀態下,糖尿病患下肢肌肉組織有較明顯的內皮細胞活化及交感神經支配活動。此可能顯示糖尿病患有較差的肌肉氧合表現,需透過代償性的血管調控維持肌肉組織間氧氣的傳遞與利用。同時,研究發現罹病初期似乎不影響休息狀態下肌肉血管組織調控。另一方面,研究中也得知肌肉收縮之刺激伴隨著血管調控功能的活化與提高,經過重複的等長肌肉收縮後,糖尿病與糖尿病前期組在內皮細胞活化與交感神經血管調控活動較正常組不明顯。以上結果顯示,無論罹病或罹病初期,其內皮細胞與交感神經的調控已受疾病影響。

    Endothelial dysfunction is one of the major factors leading to the impaired microcirculation in diabetics. Near-infrared spectroscopy (NIRS) has been developed as non-invasive method to monitor the concentration change of hemoglobin species. Previous researches have shown that changes in spectral components of NIRS signal might provide some insights into pathogenic mechanisms of diseases. The purpose of present study was to quantify the vascular regulatory mechanisms in diabetes, pre-diabetes and normal groups. NIRS signals were obtained simultaneously from prefrontal cortex and gastrocnemius muscle for 20 min resting measurement, and vastus lateralis muscle for repeatedly isometric knee-extension measurement, respectively. Three dominant frequencies of low-frequency oscillations (LFOs) in NIRS signals including endothelial activity (0.005-0.02 Hz), sympathetic innervation (0.02-0.06 Hz) and myogenic response (0.06-0.15 Hz) have been obtained from the Welch’s method. Our results suggested that the enhanced activity of endothelium and sympathetic nerve aimed to compensate adequate oxygen for the peripheral muscle tissue hypoxia in diabetes during resting. At the same time, initial stage of diabetes might not affect the muscle vascular regulation during resting. In addition, we showed that exercise could enhance the vascular regulatory mechanisms. After repeatedly isometric muscle contraction, the activation of endothelial and sympathetic nerve activity was suppressed in diabetes and pre-diabetes groups. These results may suggest that diabetes could affect the regulation of endothelium and sympathetic nerve even in patients with pre-diabetes.

    中文摘要 I Abstract II 致謝 III Content V List of Figures and Tables VII Chapter 1 Introduction 1 1-1 Diabetes mellitus 1 1-1-1 Endothelial dysfunction in diabetes 1 1-1-2 Assessment of endothelial function 2 1-1-3 Vasomotion 2 1-2 Near-infrared spectroscopy approach for investigating tissue oxygenation 3 1-2-1 Principles of near infrared spectroscopy 3 1-2-2 Detecting tissue oxygenation in diabetics during exercise 5 1-3 Physiological fluctuations in hemodynamic signals 6 1-3-1 Low-frequency oscillations in vascular system 7 1-3-2 Alternation in LFOs for pathological condition 9 1-3-3 Evaluation of LFOs by using NIRS 9 1-4 Motivation and the aims of the study 10 Chapter 2 Materials and Methods 12 2-1 Subjects 12 2-2 NIRS recording 13 2-2-1 NIRS system 13 2-2-2 NIRS measurement of resting state 14 2-2-3 NIRS measurement of exercise state 15 2-3 Data analysis 17 2-3-1. Data acquisition in resting state 17 2-3-2. Data acquisition in knee extension task 19 2-4 Statistical analysis 19 Chapter 3 Results 21 3-1 Tissue oxygenation oscillations in resting state 21 3-2 Tissue oxygenation oscillations during the post-exercise recovery 25 Chapter 4 Discussion 31 Chapter 5 Conclusion 36 References 38

    [1] J. C. Schramm, T. Dinh and A. Veves, “Microvascular changes in the diabetic foot,” Int. J. Low. Extrem. Wounds, 5: 149-159, 2006.
    [2] J. Calles-Escandon and M. Cipolla, “Diabetes and endothelial dysfunction: A clinical perspective,” Endocr. Rev., 22: 36-52, 2001.
    [3] E. C. Eringa, E. H. Serne, R. I. Meijer, C. G. Schalkwijk, A. J. Houben, C. D. Stehouwer, Y. M. Smulders and V. W. van Hinsbergh, “Endothelial dysfunction in (pre)diabetes: Characteristics, causative mechanisms and pathogenic role in type 2 diabetes,” Rev. Endocr. Metab. Disord., 14: 39-48, 2013.
    [4] B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley and G. K. Mcconell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: Role of endothelium-dependent vasodilation,” Diabetes Care, 26: 899-904, 2003.
    [5] J. E. Reusch, M. Bridenstine and J. G. Regensteiner, “Type 2 diabetes mellitus and exercise impairment,” Rev. Endocr. Metab. Disord., 14: 77-86, 2013.
    [6] S. Verma, M. R. Buchanan and T. J. Anderson, “Endothelial function testing as a biomarker of vascular disease,” Circulation, 108: 2054-2059, 2003.
    [7] M. C. Corretti, T. J. Anderson, E. J. Benjamin, D. Celermajer, F. Charbonneau, M. A. Creager, J. Deanfield, H. Drexler, M. Gerhard-Herman, D. Herrington, P. Vallance, J. Vita and R. Vogel, “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the international brachial artery reactivity task force,” J. Am. Coll. Cardiol., 39: 257-265, 2002.
    [8] M. Rossi, A. Carpi, F. Galetta, F. Franzoni and G. Santoro, “The investigation of skin blood flowmotion: A new approach to study the microcirculatory impairment in vascular diseases?” Biomed. Pharmacother., 60: 437-442, 2006.
    [9] C. Aalkjaer, D. Boedtkjer and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol., 202: 253-269, 2011.
    [10] H. Nilsson and C. Aalkjaer, “Vasomotion: Mechanisms and physiological importance,” Mol. Interv., 3: 79-89, 2003.
    [11] R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bulow and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (nirs) in health and disease,” Scand. J. Med. Sci. Sports, 11: 213-222, 2001.
    [12] M. Wolf, M. Ferrari and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt., 12: 0621041-0621014, 2007.
    [13] T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” J. Biomed. Opt., 12: 0621051-0621016, 2007.
    [14] A. Sassaroli, M. Pierro, P. R. Bergethon and S. Fantini, “Low-frequency spontaneous oscillations of cerebral hemodynamics investigated with nirs: A review,” IEEE J. Sel. Top. Quantum Electron., 18: 1478-1492, 2012.
    [15] T. G. Phan and A. Bullen, “Practical intravital two-photon microscopy for immunological research: Faster, brighter, deeper,” Immunol. Cell Biol., 88: 438-444, 2010.
    [16] V. V. Tuchin, Handbook of optical biomedical diagnostics. Washington: SPIE Press, 2002.
    [17] B. Shadgan, From olympics to optics. Washington: SPIE Professional, 2012.
    [18] T. J. Huppert, S. G. Diamond, M. A. Franceschini and D. A. Boas, “Homer: A review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Optics, 48: D280-D298, 2009.
    [19] M. Scheuermann-Freestone, P. L. Madsen, D. Manners, A. M. Blamire, R. E. Buckingham, P. Styles, G. K. Radda, S. Neubauer and K. Clarke, “Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes,” Circulation, 107: 3040-3046, 2003.
    [20] T. A. Bauer, J. E. Reusch, M. Levi and J. G. Regensteiner, “Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes,” Diabetes Care, 30: 2880-2885, 2007.
    [21] J. E. Peltonen, A. S. Koponen, K. Pullinen, H. Hagglund, J. M. Aho, H. Kyrolainen and H. O. Tikkanen, “Alveolar gas exchange and tissue deoxygenation during exercise in type 1 diabetes patients and healthy controls,” Respir. Physiol. Neuro., 181: 267-276, 2012.
    [22] H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhaupl and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage, 12: 623-639, 2000.
    [23] A. Stefanovska, “Coupled oscillatros: Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag., 26: 25-29, 2007.
    [24] M. F. Meyer, C. J. Rose, J. O. Hülsmann, H. Schatz and M. Pfohl, “Impaired 0.1-hz vasomotion assessed by laser doppler anemometry as an early index of peripheral sympathetic neuropathy in diabetes,” Microvasc. Res., 65: 88-95, 2003.
    [25] Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fmri and near-infrared spectroscopy (nirs) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage, 53: 553-564, 2010.
    [26] A. Stefanovska, M. Bracic and H. D. Kvernmo, “Wavelet analysis of oscillations in the peripheral blood circulation measured by laser doppler technique,” IEEE Trans. Biomed. Eng., 46: 1230-1239, 1999.
    [27] P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo and K. A. Kirkeboen, “Low-frequency oscillations of the laser doppler perfusion signal in human skin,” Microvasc. Res., 72: 120-127, 2006.
    [28] T. Soderstrom, A. Stefanovska, M. Veber and H. Svensson, “Involvement of sympathetic nerve activity in skin blood flow oscillations in humans,” Am. J. Physiol.-Heart Circul. Physiol., 284: H1638-H1646, 2003.
    [29] L. Bocchi, A. Evangelisti, M. Barrella, L. Scatizzi and M. Bevilacqua, “Recovery of 0.1hz microvascular skin blood flow in dysautonomic diabetic (type 2) neuropathy by using frequency rhythmic electrical modulation system (frems),” Med. Eng. Phys., 32: 407-413, 2010.
    [30] A. H. van Beek, J. Lagro, M. G. Olde-Rikkert, R. Zhang and J. A. Claassen, “Oscillations in cerebral blood flow and cortical oxygenation in alzheimer's disease,” Neurobiol. Aging, 33: 428.e421-428.e431, 2012.
    [31] M. L. Schroeter, M. M. Bucheler, C. Preul, R. Scheid, O. Schmiedel, T. Guthke and D. Y. von Cramon, “Spontaneous slow hemodynamic oscillations are impaired in cerebral microangiopathy,” J. Cereb. Blood Flow Metab., 25: 1675-1684, 2005.
    [32] Z. Li, Y. Wang, Y. Li, Y. Wang, J. Li and L. Zhang, “Wavelet analysis of cerebral oxygenation signal measured by near infrared spectroscopy in subjects with cerebral infarction,” Microvasc. Res., 80: 142-147, 2010.
    [33] A. Humeau, A. Koïtka, P. Abraham, J.-L. Saumet and J.-P. L'Huillier, “Spectral components of laser doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: Scalogram analyses,” Phys. Med. Biol., 49: 3957-3970, 2004.
    [34] Y. K. Jan, S. Shen, R. D. Foreman and W. J. Ennis, “Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot,” Microvasc. Res., 89: 40-46, 2013.
    [35] M. Rossi, S. Bertuglia, M. Varanini, A. Giusti, G. Santoro and A. Carpi, “Generalised wavelet analysis of cutaneous flowmotion during post-occlusive reactive hyperaemia in patients with peripheral arterial obstructive disease,” Biomed. Pharmacother., 59: 233-239, 2005.
    [36] Z. Li, M. Zhang, Y. Wang, Y. Wang, Q. Xin, J. Li and C. Lu, “Wavelet analysis of sacral tissue oxygenation oscillations by near-infrared spectroscopy in persons with spinal cord injury,” Microvasc. Res., 81: 81-87, 2011.
    [37] H. D. Kvernmo, A. Stefanovska, M. Bracic, K. A. Kirkeboen and K. Kvernebo, “Spectral analysis of the laser doppler perfusion signal in human skin before and after exercise,” Microvasc. Res., 56: 173-182, 1998.
    [38] M. L. Schroeter, O. Schmiedel and D. Y. von Cramon, “Spontaneous low-frequency oscillations decline in the aging brain,” J. Cereb. Blood Flow Metab., 24: 1183-1191, 2004.
    [39] Z. Li, M. Zhang, Q. Xin, G. Chen, F. Liu and J. Li, “Spectral analysis of near-infrared spectroscopy signals measured from prefrontal lobe in subjects at risk for stroke,” Med. Phys., 39: 2179-2185, 2012.
    [40] L. Bernardi, M. Rossi, S. Leuzzi, E. Mevio, G. Fornasari, A. Calciati, C. Orlandi and P. Fratino, “Reduction of 0.1 hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin-dependent diabetes,” Cardiovasc. Res., 34: 185-191, 1997.
    [41] J. D. Lefrandt, E. Bosma, P. H. Oomen, J. H. Hoeven, A. M. Roon, A. J. Smit and K. Hoogenberg, “Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy,” Diabetologia, 46: 40-47, 2003.
    [42] J. Bangsbo and Y. Hellsten, “Muscle blood flow and oxygen uptake in recovery from exercise,” Acta Physiol. Scand., 162: 305-312, 1998.
    [43] B. Saltin, G. Radegran, M. D. Koskolou and R. C. Roach, “Skeletal muscle blood flow in humans and its regulation during exercise,” Acta Physiol. Scand., 162: 421-436, 1998.
    [44] O. Krejcar and R. Frischer, “Non destructive defect detection by spectral density analysis,” Sensors, 11: 2334-2346, 2011.
    [45] A. Agnoli, C. Fieschi, L. Bozzao, Battisti.N and M. Prencipe, “Autoregulation of cerebral blood flow - studies during drug-induced hypertension in normal subjects and in patients with cerebral vascular diseases,” Circulation, 38: 800-812, 1968.
    [46] P. C. Sun, C. D. Kuo, L. Y. Chi, H. D. Lin, S. H. Wei and C. S. Chen, “Microcirculatory vasomotor changes are associated with severity of peripheral neuropathy in patients with type 2 diabetes,” Diabetes Vasc. Dis. Res., 10: 270-276, 2013.
    [47] J. Ditzel and E. Standl, “The problem of tissue oxygenation in diabetes mellitus. I. Its relation to the early functional changes in the microcirculation of diabetic subjects,” Acta Med. Scand. Suppl., 197: 49-58, 1975.
    [48] R. Schubert and M. J. Mulvany, “The myogenic response: Established facts and attractive hypotheses,” Clin. Sci., 96: 313-326, 1999.
    [49] C. Aalkjaer and H. Nilsson, “Vasomotion: Cellular background for the oscillator and for the synchronization of smooth muscle cells,” Br. J. Pharmacol., 144: 605-616, 2005.
    [50] P. C. Sun, C. S. Chen, C. D. Kuo, H. D. Lin, R. C. Chan, M. J. Kao and S. H. Wei, “Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction,” Microvasc. Res., 83: 243-248, 2012.

    無法下載圖示 校內:2016-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE