| 研究生: |
朱建勲 Chu, Chien-Hsun |
|---|---|
| 論文名稱: |
提升陸、空移動製圖系統之定位精度輔助演算法 The Development Of Aiding Algorithms To Improve The Positioning Accuracy Of Land Based And Airborne Mobile Mapping Systems |
| 指導教授: |
江凱偉
Chiang, Kai-Wei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 175 |
| 中文關鍵詞: | 空間資訊 、移動製圖 、定位定向 |
| 外文關鍵詞: | Mobile Mapping System, Calibration, Positioning and Orientation System |
| 相關次數: | 點閱:169 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有空間資訊系統之效益建構在系統空間及屬性資料時效性以及正確性,並藉此發揮它的功能以表示真實世界的現象。測量技術及屬性調查日新月異,由地面經緯儀點的量測至空中攝影測量面狀量測,由人工繪圖及文字描述至影像紀錄,但是從開始收集資料至成果獲得仍然往往需半年以上,對於高頻率的更新稍顯不足。自1990年起,加拿大及美國結合高精度整合式定位定向技術及攝影測量製圖技術,發展地面、空中移動製圖技術,移動製圖技術除了大幅減少外業作業量,而提升資料更新率,更可結合地面及空中多方向的拍攝紀錄完整的空間資訊。現今,移動製圖技術已被大量利用在軍事、民生、科學、商業、防災、監測及國土規劃等空間資訊收集。雖然移動製圖技術大幅提升資料更新率及完整性,但是對於精度部分能存在缺陷。
國立成功大學測量及空間資訊學系,自2008年起開始自主發展車載及空載移動製圖技術。本論文接續發展,除詳細剖析移動製圖技術,更發展具實用性軟、硬體及作業模式,並針對存在的問題持續精進,包含提出混合式定位定向解算法以提升定位定向解及動態率定預估時間延遲。更進一步的,本論文也發展推車式移動製圖技術,可於室內環境收集資料,更提出控制點反饋於室內環境保持精度。本論文針對提出的演算法進行相關的作業測試,對於混合式演算法測試,於理想環境下,提供三維絕對精度約50公分的車載移動製圖系統。對於動態率定測試,於航高300公尺,提供三維絕對精度8公尺的空載無人飛行機移動製圖系統。對於控制點反饋,於室內環境,提供三維絕對精度70公分的手推車式室內移動製圖系統。未來空間資訊,除了結合多平台移動製圖技術資訊而保持全面性外,將朝高精度的三維定位和高解析度的資料,以保持細緻性及大量資料處理的自動性進步。
The efficiency and advantages of spatial information systems rely on the validity and time effectiveness of spatial and attribute information to work properly and express the real world phenomenon. Surveying and attribution inventory technologies have quickly improved. Surveying technology advanced from surveying point using total station on the ground to surveying plan using aero photogrammetry in air, and attribution inventory developed from manual drawing to image record. However, high-frequency update is necessary because it usually requires about half a year of collecting data to provide the product. Since 1990, Canada and the United States have developed land and aero Mobile Mapping Systems (MMS) for solving this problem, which combine the high-accuracy Positioning and Orientation System (POS) and photogrammetry technology. MMS technologies not only decrease outdoor work for efficiency but also record complete spatial information by combining multi-directional photos from land and air. Currently, MMS technologies are applied in the military, livelihood, science, business, disaster prevention, monitoring, and land planning. Although MMS technologies improve data update frequency and integrity, its accuracy remains weak.
The Department of Geomatics in National Cheng Kung University has developed a land MMS van and aero MMS since 2008. This thesis continues this work not only by introducing the details of MMS technologies but also by developing a more practical software, hardware, and process mode. Furthermore, this thesis proposes Hybrid Tightly Coupled (HTC) for improving accuracy and kinematic calibration to estimate the time delay problem. A portable MMS cart for indoor environment is also developed, and Control Point Feedback (CPF) for improving accuracy indoors is proposed. Relative experiments are conducted to verify these proposed methods. To confirm HTC, this thesis produces 3D absolute accuracy of 50 cm of land MMS in an ideal outdoor environment. To confirm kinematic calibration, this thesis produces 3D absolute accuracy of 8 m of Unmanned Aircraft Vehicle (UAV) MMS with 300 flight height. To verify CPF, this thesis produces 3D absolute accuracy of 70 cm of land MMS cart in an indoor environment. In the future, MMS technologies will not only maintain the comprehensiveness of spatial information but will also require improve positioning accuracy in 3D and data resolution to keep the meticulous content and automatically process a large quantity of data.
1. Bouvrie, B.D. (2011): Improving RGBD Indoor Mapping with IMU data, Master thesis, Master’s Thesis in Embedded Systems, Delft University of Technology.
2. Bortz, J.E. (1971): A New Mathimatical Formulation for Strapdown Inertial Navigation. IEEE Transactions on Aerospace and Electronic System, AES-7(1): Page 61-66.
3. Britting, K.R. (1971): Inertial Navigation Systems Analysis, John Wiley and Sons, Inc., New York.
4. Brown, R. G. and Hwang, P. Y. C. (1997): Introduction to Random Signals and Applied Kalman Filtering: with MatLabR Exercises and Solutions. John Wiley & Sons, Inc., 3rd edition.
5. Bucy, R.S. and Senne, K.D. (1971): Digital Synthesis of Non-Linear Filters, Automatica, Volume 7, Issue 3, Page 287-298.
6. Chen, S., Li, M., Ren, K. and Qiao C. (2015): CrowdMap: Accurate Reconstruction of Indoor Floor Plans from Crowdsourced Sensor-Rich Videos, Distributed Computing Systems (ICDCS), 2015 IEEE 35th International Conference on, ISSN: 1063-6927, Columbus, OH, Page 1–10, 2015.
7. Chu, C.H. and Chiang, K.W. (2012): THE PERFORMANCE OF A TIGHT INS/GNSS/PHOTOGRAMMETRIC INTEGRATION SHCEME FOR LAND BASED MMS APPLICATIONS IN GNSS DENID ENVIRONMENT, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXIX-B1, Page 479-484, doi:10.5194/isprsarchives-XXXIX-B1-479-2012, 2012
8. Chiang, K.W., Tsai, M.L. and Chu, C.H. (2012): The Development of An UAV-Borne Direct Georeferenced Photogrammetric Platform For Ground Control Point Free Applications, Sensors, Volume 12, Number 7, Page 9161-9180.
9. Chu, C.M. (1993): Efficient and Effective Handling of Cycle Slips in Global Positioning System Data. PhD thesis, School of Surveying, University of New South Wales, Sydney, Australia. December 1993.
10. Chiang, K.W., Chang, H.W., Li, C.Y. and Huang, Y.W. (2009): An Artificial Neural Network Embedded Position And Orientation Determination Algorithm For Low Cost MEMS INS/GPS Integrated Sensors, Sensors, Volume 9, Issue 4, Page 2586-2610.
11. Chiang, K.W. (2004): INS/GPS Integration Using Neural Networks For Land Vehicular Navigation Applications, Doctoral and Habilitation Thesis, Department of Geomatics.
12. Cronk, S., Fraser, C.S., and Hanley, H., (2006): Hybrid Measurement Scenarios In Automated Close-Range Photogrammetry, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVII, Part B3b, Page 745-749.
13. El-Sheimy, N. (2002): Introduction to Inertial Navigation, Department of Geomatics Engineering, University of Calgary, Alberta, Canada.
14. Ellum, C.M. (2001): The Development of a Backpack Mobile Mapping System, Department of Geomatics Engineering, University of Calgary, Calgary, Canada, UCGE Reports 20159.
15. El-Sheimy, N. (1996): The Development of VISAT - A Mobile Survey System For GIS Applications, Department of Geomatics Engineering, The University of Calgary, Calgary, Canada.
16. El-Sheimy, N. (2003): Inertial Techniques And INS/DGPS Integration, Lecture Notes ENGO 623, Department of Geomatics Engineering, University of Calgary, Alberta, Canada.
17. Fraser, C.S., (1997): Digital Camera Self-Calibration, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 52, Issue 4, Page 149-159.
18. Grewal, M.S. and Andrews, A.P. (1993): Kalman Filtering Theory and Practice Using Matlab, NY, USA: John Wiley & Sons Inc.
19. Groves, P.D. (2007): Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems, Artech House.
20. Grewal, M.S., Weill, L.R. and Andrews, A.P. (2001): Global Positioning Systems, Inertial Navigation Systems, and Integration, Artech House.
21. Gelb, A. (1974): Applied Optimal Estimation. The M. I. T. Press.
22. Gibson, J.R., Schwarz, K.P., Wei, M., and Cannon, M.E. (1992): GPS-INS Data Integration For Remote Sensing, Position Location and Navigation Symposium, IEEE PLANS '92., IEEE , Page 480.
23. Hide, C. and Moore, T. (2005): GPS And Low Cost INS Integration For Positioning In The Urban Environment, Proceeding of ION GNSS, Page 1007-1015.
24. Hou, H. and El-Sheimy, N. (2003): Inertial Sensors Errors Modeling Using Allan Variance. In Proceedings of ION GPS/GNSS, Page 2860–2867, Portland, Oregon.
25. Leonard, J.J. and Durrant-Whyte, H. F. (1991): Simultaneous Map Building and Localization for an Autonomous Mobile Robot, IEEE/RSJ International Workshop on IntelligentRobots and Systems IROS ‘91. Nov. 3-5, 1991.Osaka, Japan. IEEE Cat. No. 91TH0375-6.
26. Kalman, R.E. (1960): A New Approach To Linear Filtering And Prediction Problem, The American Society of Mechanical Engineers, Journal of Fluids Engineering, Volume 82, Issue 1, Page 34-45.
27. Kersting, A.P.B. (2011): Quality Assurance of Multi-Sensor Systems, Department of Geomatics Engineering, University of Calgary, Calgary, Canada, UCGE Reports 20346.
28. King, R.W., Masters, E.G. Rizos, C. and Stolz, A. (1985): Surveying with GPS, School of Surveying, University of New South Wales, Australia.
29. Khoshelham, K. and Elberink, S.O. (2012): Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications, Sensors 2012, 12(2), Page 1437-1454; doi:10.3390/s120201437.
30. Li, Y.H (2010): The Calibration Methodology of a Low Cost Land Vehicle Mobile Mapping System, Proceedings of ION GNSS 2010, Portland, OR, 2010.
31. Landau, H., Vollath, U., and Chen. X. (2002): Virtual Reference Station Systems, Journal of Global Positioning Systems, Volume 1, Number 2, Page 137-143.
32. Lechner, W. and Lahmann, P. (1995): Airborne Photogrammetry Based on Integrated DGPS/INS Navigation, Proceedings of the 3rd International Workshop on High Precision Navigation (K. Linkwitz and U. Hangleiter, editors), Bonn, Germany, Page 303-310.
33. Leick, A. (1995): GPS Satellite Surveying, Second Edition, John Wiley & Sons, Inc., New York.
34. Lewantowicz, Z.H. (1992): Architectures And GPS/INS Integration: Impact On Mission Accomplishment, IEEE Aerospace and Electronics Systems Magazine, Volume 7, Issue 6, Page 16-20.
35. Maybeck, P. (1979): Stochastic Models, Estimation, and Control: Volume 1, Academic Press, New York.
36. Maybeck, P. S. (1994a): Stochastic Models, Estimation, and Control: Volume 1.
37. Mazumdar, P., Ribeiro, V.J. and Tewari, S. (2014): Generating indoor maps by crowdsourcing positioning data from smartphones, Indoor Positioning and Indoor Navigation (IPIN), 2014 International Conference on, Busan, Page 322 – 331, 2014.
38. Nassar, S., Niu, X. and El-Sheimy, N. (2007): Land-Vehicle INS/GPS Accurate Positioning During GPS Signal Blockage Periods, Journal of Surveying Engineering, Volume 133, Issue 3, Page 134-143.
39. O'Brien Jr., W.P. (2009): Measuring Magnetic Declination With A Compass, Virtual Globes And A Global Positioning System, International Journal of Digital Earth, Volume 2, Issue 1, Page 31-43.
40. Parkinson, B.W. and Spilker, J.J. (1996): Global Positioning System: Theory And Applications, Vol. 1, American Institute of Aeronautics and Astronautics.
41. Rogers, R.M. (2007): Applied Mathematics in Integrated navigation systems, Third Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.
42. Rizos, C. (1996): Principles and Practice of GPS Surveying. School of Geomatic Engineering, The University of New South Wales, Sydney NSW, Australia.
43. Rizos, C. and Grant, D.B. (1990): Time and the Global Positioning System. In “Contributions to GPS Studies” (ed: Rizos, C.), UNISURV S-38, the School of Surveying, University of U.S.W., Australia, Page 45-101.
44. Scherzinger, B.M. (2000): Precise Robust Positioning With Inertial/GPS RTK, Proceeding of ION GPS, Page 155-162.
45. Schwarz, K.P., Chapman, M.E., Cannon, E. and Gong, P. (1993): An Integrated INS/GPS approach to the georeferencing of remotely sensed data, Photogrammetric Engineering & Remote Sensing, vol. 59, no. 11, Page 1667-1674.
46. Scherzinger, B. M. (1996): Inertial Navigator Error Models for Large Heading Uncertainty. In IEEE Position Location and Navigation Symposium, Page 477–484.
47. Schwarz, K.P., Chapman, M.E., Cannon, E., and Gong, P. (1993): An Integrated INS/GPS Approach To The Georeferencing Of Remotely Sensed Data, Photogrammetric Engineering and Remote Sensing, Volume 59, Number 11, Page 1667-1674.
48. Schwarz, K.P., and Wei, M., (2000): INS/GPS Integration For Geodetic Applications, Lecture Notes ENGO 623, Department of Geomatics Engineering, University of Calgary, Alberta, Canada.
49. Shen, X. and Gao, Y. (2002): Kinematics Processing Analysis Of Carrier Phase-Based Precise Point Positioning. Proceedings of FIG XXII International Congress.
50. Shin, E.H., (2001): Accuracy Improvement Of Low Cost INS/GPS For Land Applications, Master Thesis, Department of Geomatics Engineering, University of Calgary, Alberta, Canada.
51. Shin, E.H., and El-Sheimy, N., (2005): Navigation Kalman Filter Design For Pipeline Pigging, Journal of Navigation, Volume58, Issue 2, Page 283-295.
52. Skalouda, J., Legatb, K. (2008): Theory and reality of direct georeferencing in national coordinates. ISPRS J. Photogramm. Remote Sens. 2008, 63, Page 272–282.
53. Tao, V. and Li, J. (2007): Advances in Mobile Mapping Technology; International Society for Photogrammetry and Remote Sensing (ISPRS) Book Series; Taylor and Francis Group: London, UK, 2007.
54. Tehrani, M. M. (1983): Ring Laser Gyro Data Analysis with Cluster Sampling Technique. In Proceedings of SPIE, volume 412, Page 207–220.
55. Thomson, C., Apostolopoulos, G., Backes, D. and Boehm, J. (2013): Mobile Laser Scanning for Indoor Modelling, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5(W2), 2013 ISPRS Workshop Laser Scanning 2013, Antalya, Turkey, 2013.
56. Titterton, D.H., and Weston, J.L., (1996): Strapdown Inertial Navigation Technology, The Institution of Electrical Engineers.
57. Wen, C., Qin, L., Zhu, Q., Wang, C. and Jonathan Li. (2014): Three-Dimensional Indoor Mobile Mapping With Fusion of Two-Dimensional Laser Scanner and RGB-D Camera Data, IEEE Geoscience and Remote Sensing Letters 2014 APRIL,11 (4): Page 843-847.
58. Wendel, J. and Trommer, G.F. (2004): Tightly Coupled GPS/INS Integration For Missile Applications, Aerospace Science and Technology Volume 8, Issue 7, Page 627-634.
59. Wulf, O., Arras, K.O., Christensen, H.I. and Wagner, B. (2004): 2D Mapping of Cluttered Indoor Environments by Means of 3D Perception, Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004.
60. Wolf, P.R., and Dewitt, B.A. (2000): Elements Of Photogrammetry With Applications In GIS, Third Edition, McGraw-Hill Companies, Inc., Boston.
61. Xu, G. (2003): GPS Theory, Algorithms and Applications, 2003, ISBN 3-540-67812-3, Springer-Verlag, Berlin Heidelberg New York.
62. Yang, S., Dessai, P., Mansi, V. and Gerla, M. (2013): FreeLoc: Calibration-free crowdsourced indoor localization, 2013 Proceedings IEEE, Turin, Page 2481–2489, 2013.
63. Zhang, X., Jin, Y., Tan, H.X. and Soh, W.S. (2014): CIMLoc: A crowdsourcing indoor digital map construction system for localization, Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on, Singapore, Page 1-6, 2014.
64. Zlatanova, S., Sithole, G., Nakagawa, M. and Zhu Q. (2013): Problems in Indoor Mapping and Modelling, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4(W4), 2013 ISPRS Acquisition and Modelling of Indoor and Enclosed Environments 2013, Cape Town, South Africa, 2013.