| 研究生: |
郭法辰 Kuo, Fa-Chen |
|---|---|
| 論文名稱: |
以頻帶外到達角輔助於毫米波通訊之波束掃描與追蹤:改善與實作 Implementation and Improvement of Out-of-Band AOA aided Beam Scanning and Tracking for mmWave Communications |
| 指導教授: |
劉光浩
Liu, Kuang-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 波束掃描 、波束追蹤 、毫米波 、頻帶外資訊 、軟體定義無線電 、調變與編碼策略調整 、波束匹配 |
| 外文關鍵詞: | beam scanning, beam tracking, millimeter-wave, out-of-band information, software defined radio, modulation and coding scheme |
| 相關次數: | 點閱:118 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現行的通信系統所使用的頻段都集中在6 GHz 以下,然而隨著高速通信需求不斷地提高,6 GHz 頻段將越加壅擠。因此,具有龐大頻譜潛力的毫米波頻段通訊系統,被視為下個世代的主力服務頻段。然而,毫米波的頻段相對於低頻段有更嚴重的路徑能量損耗,因此需要波束賦形的技術來實現長距離的通訊。波束賦形技術通常是利用多根天線形成的天線陣列來達成某個特定方向的指向性傳輸,然而在傳收兩端的使用波束會有匹配的問題,尤其在用戶端移動的場景下,傳收兩端的波束匹配更需要不斷的更新。在本篇論文中,我們先回顧了幾種波束匹配的演算法,並提出了以利用毫米波頻帶外的訊號衍生特性,做為輔助毫米波波束匹配的演算法。我們也提出了兩階段式的波束掃描演算法來增加通訊系統一開始在傳收兩端完成波束匹配的效率。最後我們提出主動式的調整調變與編碼策略,而使資料的傳輸能根據通道的狀態來自動調整。這些提出的方法皆實做在以軟體定義無線電為基礎的平台,並在室內大廳進行現場測量。根據實驗的結果,我們比較了現有方法跟提出的方法,並歸納出優缺點及效能分析。
As the demand of high speed wireless communication rises fiercely, the higher frequency band with tremendous available spectrum is a strong candidate to meet the need of future wireless communications. Among all the high frequency bands, the millimeter-wave (mmWave) frequency band has attracted much attention from both industry and academia. However, the high path loss on mmWave frequency band can greatly attenuate the signal strength. To overcome this issue, beamforming techniques with array antennas are usually considered for mmWave communications. Nevertheless, under the moving scenario, the beam alignment needs to be updated whenever the beam pair strength is not strong enough to maintain the communication link. In this thesis, a two-stage beam scanning method and a beam tracking method with the aid of out-of-band information are proposed to efficiently solve the beam misalignment problem. The proposed methods are implemented on an software-defined radio prototype system. To further enhance the data transmission rate, modulation and coding scheme adjustment algorithm is proposed to adapt the transmission rate to channel conditions. Through measurement results, the merits of the proposed methods are confirmed in comparison with the conventional method.
[1] J. Bae, S. H. Lim, J. H. Yoo, and J. W. Choi, “New beam tracking technique for millimeter wave-band communications,” arXiv preprint arXiv:1702.00276, 2017.
[2] D.-S. Shim, C.-K. Yang, J. Kim, J. Han, and Y. Cho, “Application of motion sensors for beam-tracking of mobile stations in mmwave communication systems,” Sensors, vol. 14, no. 10, pp. 19 622–19 638, 2014.
[3] Y. Guo, Z. Wang, M. Li, and Q. Liu, “Machine learning based mmwave channel tracking in vehicular scenario,” in Proc. IEEE International Conference on Communications Workshops (ICC Workshops), 2019.
[4] A. Ali, N. González-Prelcic, and R. W. Heath, “Estimating millimeter wave channels using out-of-band measurements,” in Proc. Information Theory and Applications Workshop (ITA), 2016.
[5] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave mimo systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453, 2016.
[6] X. Wang, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon, and G. Chen, “Millimeter wave communication: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.
[7] C. A. Balanis, Antenna theory: Analysis and Design. John wiley & sons, 2016.
[8] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook based beamforming sequence design in millimeter-wave systems,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2015.
[9] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh, “Millimeter wave beamforming for wireless backhaul and access in small cell networks, IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.
[10] S. Jayaprakasam, X. Ma, J. W. Choi, and S. Kim, “Robust beam-tracking for mmwave mobile communications,” IEEE Communications Letters, vol. 21, no. 12,pp. 2654–2657, 2017.
[11] V. Va, H. Vikalo, and R. W. Heath, “Beam tracking for mobile millimeter wave communication systems,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2016.
[12] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions On Antennas And Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[13] G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid beamforming via the kronecker decomposition for the millimeter-wave massive mimo systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 2097–2114, 2017.
[14] N. González-Prelcic, A. Ali, V. Va, and R. W. Heath, “Millimeter-wave communication with out-of-band information,” IEEE Communications Magazine, vol. 55, no. 12, pp. 140–146, 2017.
[15] Z. He and F. Zhao, “Performance of harq with amc schemes in lte downlink,” in Proc. International Conference on Communications and Mobile Computing, vol. 2,2010.
[16] M. P. Mota, D. C. Araujo, F. H. Costa Neto, A. L. F. de Almeida, and F. R. Cavalcanti, “Adaptive modulation and coding based on reinforcement learning for 5G networks,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2019.
[17] Y. Inoue, Y. Kishiyama, Y. Okumura, J. Kepler, and M. Cudak, “Experimental evaluation of downlink transmission and beam tracking performance for 5G mmw radio access in indoor shielded environment,” in Proc. IEEE 26th annual international symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015.
[18] Y. Inoue, Y. Kishiyama, S. Suyama, J. Kepler, M. Cudak, and Y. Okumura, “Field experiments on 5G mmwave radio access with beam tracking in small cell environments,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2015.
[19] T. Obara, Y. Inoue, Y. Aoki, S. Suyama, J. Lee, and Y. Okumurav, “Experiment of 28 ghz band 5G super wideband transmission using beamforming and beam tracking in high mobility environment,” in Proc. IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),2016.
[20] K. Tateishi, D. Kurita, A. Harada, Y. Kishiyama, S. Itoh, H. Murai, N. Schrammar, A. Simonsson, and P. Ökvist, “Experimental evaluation of advanced beam tracking with csi acquisition for 5G radio access,” in Proc. IEEE International Conference on Communications (ICC), 2017.
[21] K. Tateishi, D. Kurita, A. Harada, Y. Kishiyama, S. Itoh, H. Murai, S. Parkvall,J. Furuskog, and P. Naucler, “5G experimental trial achieving over 20 gbps using advanced multi-antenna solutions,” in Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016.
[22] Y. S. Li, “Millimeter-wave beam tracking in multi-user communication systems based on out-of-band aoa estimate: Design and implementation,” in Thesis for Master of Science in Institute of Computer and Communication Engineering National Cheng Kung University, 07 2019. [Online]. Available: http://ir.lib.ncku.edu.tw/handle/987654321/186006
[23] 3GPP, “NR; Multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP), Technical specification (TS) 38.212, 09 2018, version 15.3.0.
[Online].Available:https://www.3gpp.org/DynaReport/38212.htm
[24] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical specification (TS) 36.211, 03 2011, version 10.1.0. [Online]. Available: https://www.3gpp.org/DynaReport/36211.htm