| 研究生: |
潘友錫 Pan, Yo-Si |
|---|---|
| 論文名稱: |
台灣西南部嘉南平原沉積物砷富集機制:錦湖岩芯高解析採樣之地球化學與礦物組成證據 Arsenic enrichment mechanisms in sediments from Chia-Nan Plain, SW Taiwan: geochemical and mineralogical evidence from high-resolution sampling in Jin-Hu core |
| 指導教授: |
楊懷仁
Yang, Huai-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 砷 、沉積物 、黏土礦物 、有機物 、鐵氫氧化物 |
| 外文關鍵詞: | arsenic, sediment, clay, organic matter, iron oxyhydroxide |
| 相關次數: | 點閱:161 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣嘉南平原地下水含有異常高濃度的砷(> 0.35 ppm),其來源至今仍無定論。因地下水與含水層與阻水層沉積物有密切的地質相關性,這些沉積物應是地下水中砷最可能的來源。因此本研究分析位於台南縣錦湖之鑽井岩芯(165個)與嘉南地區河口及河岸(38個)沉積物樣本之礦物組成,並量測其砷、Al2O3、 CaO、 MnO、 TiO2、 Fe2O3、總碳及總有機碳含量與鍶和釹同位素比值。於含砷量高的岩芯沉積物區段行高解析之密集分析,以討論台灣西南部沉積物砷含量分佈變化,並推測高含砷量之沉積物與地下水之間的關連。
嘉南平原沉積物由砂、粉砂及黏土組成,無礫石。主要礦物為石英、長石及黏土礦物(伊萊石與綠泥石)。所有河口及河岸沉積物樣本及大部分岩芯沉積物樣本的砷含量皆低於 20 ppm (平均為 8.9 ppm),與一般地殼物質相似(5-10 ppm)。但在錦湖岩芯中有6個黃色沉積物與5個灰黑色沉積物樣本的砷含量為30-435 ppm,這些皆屬阻水層沉積物,其深度分別位於嘉南平原第三與第四含水層內,由這些樣本之化學特性可推測兩種砷於沉積物中富集的機制。
第三含水層中含約2公尺厚的黃色沉積物,其中6個高砷樣本具相似之87Sr/86Sr與143Nd/144Nd比值,其砷含量由頂部及底部向此層中心遞減,形成此現象之可能機制為砷由含水層與阻水層交界處往阻水層內部遷移。在此模式中,地下水擷取含水層的砷,將其釋入至阻水層中,而阻水層中可擷取砷的介質可能是黏土礦物或是X光繞射無法偵測的鐵氫氧化物。
第四含水層中高砷沉積物樣本具相同143Nd/144Nd值,指示其碎屑成分源共同源區;但87Sr/86Sr值卻有顯著差異,且與砷含量呈現負相關,表示沉積物中有自生礦物生成,而這些自生礦物可富集砷,所以當自生礦物含量增加,87Sr/86Sr比值降低且砷含量增加。僅此類砷含量高之樣本含有石膏,表示當時的沉積環境為氧化環境,因而最可能富集砷的介質,是X光繞射無法偵測的鐵氫氧化物,但無法完全排除黏土礦物或有機物亦為砷之寄主。
綜合以上論述,第三含水層沉積物之砷局部富集現象為地下水砷與沉積物反應後沉澱所致;而第四含水層中之砷富集則是於氧化環境下沉積過程中形成。這些高砷沉積物的砷可能因地下水特性的改變,如有機物含量增加而釋出,使地下水中砷含量增高。依此推論,沉積物為地下水砷主要來源,而地下水的砷含量則與其化學特性有密切關連。
The source of arsenic in the high-arsenic groundwater from the Chainan plain in SW Taiwan has been an issue of debate. Because of their close association with the groundwater, aquifer and aquitard sediments should be firstly considered before postulating any other alternative sources. In this study, 165 sediment samples from a drill core from the Jin-Hu town and 40 alluvial and river bank sediment samples were analyzed for constituting minerals and concentrations of arsenic, Al2O3, CaO, MnO, TiO2, total iron oxides, total carbon, and total organic carbon (TOC) as well as 87Sr/86Sr and 143Nd/144Nd isotope ratios. Detailed high resolution analyses were carried out at the high-arsenic zones. These data reveal the distribution of arsenic in sediment at SW Taiwan and provide critical information for evaluating the relationship between high-arsenic sediments and high-arsenic groundwater.
The Chainan plain sediments are composed of sand, silt and clay without gravel. Their major constituting minerals include quartz, feldspar and clay minerals dominated by chlorite and illite. All the alluvial and river bank sediment samples and the majority of the core samples have arsenic contents below 20 ppm with an average of 8.9 ppm, typical of crustal materials. However, 6 yellowish samples and 5 grey-blackish samples from the Jin-Hu core contain 30-435 ppm arsenic. They are all aquitard sediments with the former and later being respectively intercalated in the depth ranges of the third and fourth aquifers beneath the Chainan plain. The geochemical characteristics of these high-arsenic samples lead to two contrasting mechanisms for observed arsenic-enrichment.
As indicated by their homogeneous 87Sr/86Sr and 143Nd/144Nd ratios, the 6 yellowish high-arsenic samples are from the top and bottom of a ~2 meter thick aquitard layer, in which arsenic concentration decrease systematically toward its center. These geochemical features are explained by inward arsenic-migration from the aquitar-aquifer contacts into the aquitard layer. In this model, the groundwater extracted arsenic from the aquifer sediments, then release arsenic into the associated aquitard layer, which contain relatively abundant arsenic up-taking minerals; in this case, clay minerals and/or XRD un-identified iron-oxy-hydroxides.
The high-arsenic samples from the depth range of the fourth aquifer have similar 143Nd/144Nd ratio, indicating derivation from a common detrital sources. However, their 87Sr/86Sr ratio varies well beyond analytical uncertainty, reflecting the addition of authigenic components. The inverse correlation between 87Sr/86Sr ratio and arsenic concentration is consistent with arsenic-enrichment caused by the involvement of low 87Sr/86Sr authigenic sediments. All these high-arsenic samples are distinct from other samples for containing gypsum, arguing unambiguously for an oxidized sedimentation environment. It can then be inferred that arsenic is concentrated in XRD un-identified iron-oxy-hydroxides, although the role of clay minerals and organic matters cannot be completely precluded.
In summary, the arsenic-enrichment in the third aquifers was caused by interaction with groundwater after sedimentation, while that in the fourth aquifer occurred during sedimentation under an oxidized environment. The arsenic in these high-arsenic sediments could be released into groundwater with proper chemical constituents, probably high contents of organic matters. In such a scenario, the source of arsenic in the high-arsenic groundwater from the Chainan plain is attributed to high-arsenic aquitard sediments; therefore, there is no need to postulate alternative sources distal from the groundwater. This model is strengthened by the low arsenic contents in the alluvial and river bank sediments.
中文文獻
中央地質調查所網站 http://www.moeacgs.gov.tw/。
王聖瑋 台灣西南沿海地區地層環境中砷之來源與釋出機制,國立台灣大學生物環境系統研究所博士,2007。
李志威 台灣西南港尾及新塭鑽井岩心地球化學特性之探討。國立台灣大學地質學研究所碩士論文,2000。
呂鋒洲、楊重光與林國煌 嘉南烏腳病患區飲用地下水之理化特徵。台灣醫誌,74;596-605,1975。
呂鋒洲、謝宏濱、吳新英、孫金財、郭宗禮、李俊仁與胡惠德 烏腳病流行區井水中螢光強度、砷濃度、pH值和總溶解固體物彼此相關性及與烏腳病流行之探討。經濟部中央地質調查所水文地質研討會論文專集,頁: 151-164,1989。
何春蓀 台灣地質概論-台灣地質圖說明書,二版。經濟部中央地質調查所出版,1986。
林朝棨 台灣地形,台灣省文獻委員會,共242頁,1957。
林朝棨與周瑞敦 台灣地質,台灣省文獻委員會,1974。
邱弘毅 台灣西南沿海烏腳病盛行地區及蘭陽盆地居民無機砷代謝能力與健康危害之流行病學研究,國立台灣大學流行病學研究所,1996。
吳樂群 嘉南平原沈積物與沈積環境環境分析及地層對比研究,台灣地區地下水觀測網第二期計畫—八十八年度報告。中央地質調查所。共62頁,1999。
吳琮壬 嘉義海岸平原區末次冰期以來古沉積環境之研究,國立台灣大學地質科學研究所碩士論文,2007。
陳文山、宋時驊、吳樂群、徐澔德與楊小青 末次冰期以來台灣海岸平原區的海岸線變遷:國立臺灣大學考古人類學刊,62期40-55頁,2004a。
陳文山、楊志成、楊小青、吳樂群、林啟文、張徽正、石瑞銓、林偉雄、李元希、石同生與盧詩丁 從構造地形探討嘉南地區的活動構造. 經濟部中央地質調查所彙刊。第十七號,第53-77頁,2004b。
陳文山、葉明官、楊志成、石瑞銓、林啟文與侯進雄 梅山斷層的構造特性。經濟部中央地質調查所彙刊,第十九號,第135-151頁,2006。
陳文福 台灣的地下水,遠足文化出版,2005。
陳于高 晚更新世以來南台灣地區海水面變化與新構造運動研究,國立台灣大學地質科學研究所博士論文,1993。
陳鎮東 海洋化學,國立編譯館,1994。
陳麒全 台灣嘉南平原新東集錦湖兩地沉積物砷富集與釋出之研究,國立台灣大學地質科學所碩士論文,2003。
曾鈞懋 沉積物中重金屬物種之分離研究。國立台灣大學地質科學所碩士論文,1991。
黃姿勳 台灣布袋岩芯中沉積物砷含量分佈變化及其地質意義,國立成功大學地球科學所碩士論文,2009。
畢如蓮 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大地質科學所碩士論文,2007。
經濟部水資會 民國七十三年台灣水利年報:經濟部水資會,1986。
經濟部水利署 台灣地區地下水觀測網水質常態監測與調查分析(2/2),2005。
經濟部水利署水利規劃試驗所 95年度台灣地區地下水水質檢測分析與評估專題報告書,2006。
歐東坤 台南地區地下水砷濃度之研究,國立台灣大學地質科學所碩士論文,2005。
劉聰桂與畢如蓮 台灣西南海岸平原水文地質與地球化學初探。中國地質學會八十四年年會摘要,頁536-540,1995。
劉聰桂 台灣西南海岸變遷(北港至二仁溪)台灣西南海岸平原地下水地球化學研究及與大陸地方性砷中毒病區環境地球化學之對比研究。行政院國科會研究計畫報告,1995。
顏富士 曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷,第3期,1978。
顏富士、龍村倪與呂泰華 台灣省地下水含砷異常之環境模式初議,台灣環境衛生,第12卷,第1期,1980。
英文文獻
Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahasay, B.C., Guha, S. and Bhoumik, A., Arsenic poisoning in the Ganges delta. Nature, 401, 545–546, 1999.
Allaway, W.H., Agronomic Controls over the Environmental Cycling of Trace Elements. Adv. Agron., 20, 235–274, 1968.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T. and Ishizuka, T., Safiullah, S. and Kato, K., Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2–3), 109–131, 2003.
Asahara, Y., 87Sr/86Sr variation in north Pacific sediments: a record of the Milankovitch cycle in the past 3 million years. Earth and Planetary Science Letters, 171, 453–464, 1999.
Aurillo, A.C., Mason, R.P. and Hemond, H.F., Speciation and fate of arsenic in 3 lakes of the Aberjona watershed. Environ. Sci. Technol., 28, 577–585, 1994.
Bang, S, Korfiatis, G.P. and Meng X., Removal of arsenic from water by zero-valent iron. Journ. Haz. Mat., 121, 61–67, 2005.
Baur, W.H., Onishi, B.-M.H., Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin. pp. 33-A-1–33-0-5, 1969.
Berner, R.A., A new geochemical classification of sedimentary environments. J. Sediment. Petrol., 51, 359–365, 1981.
Belzile, N. and Tessier, A., Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochimica Et Cosmochimica Acta, 54(1), 103–109, 1990.
Bose, P. and Sharma, A., Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Research, 36, 4916–4926, 2002.
British Geological Survey (BGS), Executive Summary of the Main Report of Phase I, Groundwater Studies of As Contamination in Bangladesh, by British Geological Survey and Mott MacDonald (UK) for the Government of Bangladesh, Ministry of Local Government,Rural Development and Cooperatives DPHE and DFID (UK),http://www.dainichi-consul.co.jp/english/article/DFID-sum.html, 2000.
Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 288p, 1988.
Chapelle, F.H., Groundwater Microbiology and Geochemistry, 2nd Edition, John Wiley, New York, 477p, 2001.
Charlet, L., Chakraborty, S., Appelo, C.A.J., Roman-Ross, G., Nath, B., Ansari, A.A., Musso, M., Chatterjee, D. and Basu Mallick, S., Chemodynamics of an As “hotspot” in a West Bengal aquifer: a field and reactive transport modelling study. Applied Geochemistry, 22, 1273–1292, 2007.
Chen, S.L., Dzeng, S.R., Yang, M.H., Chlu, K.H., Shleh, G.M. and Wal, C.M., Arsenic species in groundwater of the blackfoot disease area, Taiwan. Environ. Sci. Technol., 28, 877–881, 1994.
Chester, R., Thomas, A., Lin, F.J. Basaham, A.S. and Jacinto, G., The solid state speciation of copper in surface water particulates and oceanic sediments. Marine Chemistry, 24, 261–292, 1988.
Chiou, H.Y., Chiou, S.T., Hsu, Y.H., Chou, Y.L., Tseng, C.H., Wei, M.L., and Chen, C.J., Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am. J. Epidemiol., 153, 411–418., 2001
De Vitre, R., Belzile, N. and Tessier, A., Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol. Oceanogr. 36(7): 1480-1485, 1991.
Dhar, R.K. Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A.W., Ahmed, S.A. and Hadi, S.A., Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59, 1997.
Dowling, C.B., Poreda, R.J., Basu, A.R., Peters, S.L. and Aggarwal, P.K., Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour. Res., 38(9), 1173, 2002.
DPHE, Groundwater Studies for Arsenic Contamination in Bangladesh. Final Report, Rapid Investigation Phase. Department of Public Health Engineering, Government of Bangladesh. Mott MacDonald and British Geological Survey, 1999.
Driehaus, W., Jekel, M., and Hildebrandt, U., Granular ferric hydroxide - a new adsorbent for the removal of arsenic from natural water. Aqua, 47, 30–35, 1998.
Engel, R.R, Hopenhayn-Rich, C., Receveur, O., and Smith, A.H., Vascular effects of chronic arsenic exposure: a review. Epidemiol. Rev., 16, 184–209, 1994.
Fazal, M. A., Kawachi, T. and Ichion, E., Validity of the latest research findings on cause of groundwater Arsenic contamination in Bangladesh. Water Int., 26 (2), 380–389, 2001a.
Fazal, M.A., Kawachi, T. and Ichion, E., Extent and severity of groundwater Arsenic contamination in Bangladesh. Water Int., 26 (3), 370–379, 2001b.
Frost, D.V., Arsenicals in Biology - Retrospect and Prospect. Fed. Proc., Fed. Am. Soc. Exp. Biol., 26, 194–208, 1967.
Gillham, R.W. and Cherry, J.A., Contaminant migration in saturated unconsolidated geologic deposits. Spec. Pap. Geol. Soc. Am., 189, 31– 62, 1982.
Hiller, E., Jurkoviča, L., Kordík, J., Slaninka, I., Jankulár , M., Majzlan, J., Göttlicher, J. and Steininger, R., Arsenic mobility from anthropogenic impoundment sediments – Consequences of contamination to biota, water and sediments, Poša, Eastern Slovakia. Applied Geochemistry, 24, 2175–2185, 2009.
Hossain, M. F., Arsenic contamination in Bangladesh—An overview. Agriculture, Ecosystems and Enviroment, 113(1–4), 1–16, 2006.
Hsu, L. M., Pleistocene formation with dissolved-in-water type gas in the Chianan Plain, Taiwan. Petroluem Geology of Taiwan, 11, 27–39, 1984.
IARC (1987) Arsenic and arsenic compounds, in: IARC Monographs. IARC, Lyon, Suppl., 7, 100–106.
IPCS, Arsenic and arsenic compounds. EHC, No: 224. http://www.inchem.org/documents/ehc/ehc/ehc224.htm, 2001.
Kent, D. B. and Fox, P. M., The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel. Geochem. Trans. 5, 1–12, 2004.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C. and Hemond, H.F., Validation of arsenic sequential extraction method for evaluating nobility in sediments. Environment Science & Technology, 35(13), 2778–2784, 2001.
Kim, M.J., Nriagu, J. and Haack, S., Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34(15), 3094–3100, 2000.
Kim, M.J., Separation of inorganic arsenic species in groundwater using ion exchange method. Bull. Environ. Contam. Toxicol. 67, 26–51, 2001.
Kim, M.J., Nriagu, J. and Haack, S., Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120(2), 379–390, 2002.
Kim, M.J., Nriagu, J. and Haack, S., Arsenic behavior in newly drilled wells. Chemosphere, 52, 623–633, 2003.
Lewis, C., Ray, D. and Chiu, K.K., Primary geologic sources of arsenic in the Chianan Plain(Blackfoot disease area) and the Lanyang Plain of Taiwan. International Geology Review, Vol. 49, 947–961, 2007.
Li, X.D., Coles, B.J., Ramsey, M.H. and Thornton, I., Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124, 109–123, 1995.
Lovley, D.R., Organic-matter mineralization with the reduction of ferric iron - a review. Geomicrobiology Journal, 5(3-4), 375-399, 1987.
Mandal, B.K. Chowdhury, T.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K. C. and Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2–3), 185–201, 1998.
Mandal, B.K. and Suzuki, K.T., Arsenic round the world: a review. Talanta, 58 201-235, 2002.
Matschullat, J., Arsenic in the geosphere—A review. Sci. Total Environ., 249, 297–312, 2000.
McArthur, J.M., Ravenscroft, P., Safiulla, S. and Thirlwall, M.F., Arsenic ingroundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resource Research, 37, 109–117, 2001.
Moi, W.M., and Wai, C.M., Mobilization of arsenic in contaminated river sediment, in Arsenic in the Environment, part I, Cycling and Characterization, edited by J. Nriagu, pp. 99– 118, John Wiley, New York,1994.
Mukherjee, A. and Fryar, A.E., Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal Basin, West Bengal, India. Applied Geochemistry, 23, 863–893, 2008.
Nag, J.K., Balaram, V., Rubo, R., Alberti, J. and Das, A.K., Inorganic arsenic species in groundwater: a case study from Purbasthali (Burdwan), India. J. Trace Elements Med. Biol., 10, 20–24, 1996.
Nath, B., Stueben, D., Basu Mallik, S., Chatterjee, D. and Charlet, L., Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 23, 977–995, 2008a.
Nath, B., Berner, Z., Chatterjee, D., Basu Mallik, S. and Stueben, D., Mobility of arsenic inWest Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry, 23, 996–1011, 2008b.
Nath, B., Jean, J.S., Lee, M.K., Yang, H.J. and Lui, C.C., Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: Possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99, 85–96, 2008.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., and Rahman, M., Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700), 338–338, 1998.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M., Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413, 2000.
Neumann, R.B., Ashfaque, K.N., Badruzzaman, A.B.M., Ali, M.A. Shoemaker, J.K. and Harvey, C.F., Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3, 46–52, 2010.
Ng, J.C., Wang, J.P., and Shraim, A., A global health problem caused by arsenic from natural sources. Chemosphere, 52, 1353–1359, 2003.
Onishi, H., Arsenic. In: Wedepohl, K.H., (Ed.), Handbook of geochemistry, Volume 11-2, Chapter 33, Berlin, Springer-Verlag, 1969.
Onken, B.M. and Hossner, L.R., Plant uptake and determination of arsenic species in soil solution under flooded conditions. J. Environ. Qual. 24, 373–381, 1995.
Onken B Mand Hossner L.R., Determination of arsenic speciesin soil solution under flooded conditions. Soil Sci. Soc. Am. J., 60, 1385–1392, 1996.
Oyarzún, R., Lillo, J., Higueras, P., Oyarzún, J. and Maturana, H., Strong arsenic enrichment in sediments from the Elqui watershed, northern Chile: industrial goldmining at El Indio–Tambo district versus geologic processes. Geochem. Expl., 84, 53–64, 2004.
Pal, T., Mukherjee, P.K. and Sengupta, S., Nature of arsenic pollutants in groundwater of Bengal Basin — a case study from Baruipur area, WestBengal, India. Current Science, 82, 554–561, 2002.
Pichler, T., Veizer, J., Hall, G.E.M., Natural input of arsenic into a coral reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environ. Sci. Technol. 33, 1373–1378, 1999.
Pontius, F.W., Brown, K.G. and Chen, C.J., Health implications of arsenic in drinking water. J. AWWA, 86, 52–63, 1994.
Peterson, M.L. and Carpenter, R., Arsenic distributions in porewaters and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, B.C. Geochim. Cosmochim. Acta, 50, 353–369, 1986.
Raymahashay, B.C. and Khare, A.S., The arsenic cycle in Late Quaternary fluvial sediment: Mineralogical considerations. Current Science, 84, 1102–1104, 2003.
Selene, C.-H., Chou, J. and De Rose, C.T., Case studies – Arsenic. International Journal of Hygiene and Environmental Health, 206, 381–386, 2003.
Shaw, D., Mobility of arsenic in saturated, laboratory test sediments under varying pH conditions. Engineering Geology, 85, 158–164, 2006.
Shibasaki, N., Lei, P. and Kamata, A., Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh. Journal of Environmental Science and Health, Part A, 42: 12, 1919–1932, 2007.
Schreiber, M.E., Simo, J.A. and Freiberg, P.G., Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8, 161–176, 2000.
Smedley, P.L., Edmunds, W.M. and Pelig-Ba, K.B., Mobility of arsenic in groundwater in the Obuasi gold-mining area Ghana: some implication for human health. In: Appleton, J.D., Fuge, R. and McCall, G.J.H.(Eds.), Environmental Geochemistry and Health, 113, Geological Society Special Publication, London, 163–181, 1996.
Smedley, P.L. and Kinniburgh, D.G., A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568, 2002.
Smedley, P.L., Zhang, M., Zhang, G. and Luo, Z., Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, Vol. 18, 1453–1477, 2003.
Spliethoff, H.M., Mason, R.P. and Hemond, H.F., Interannual Variability in the Speciation and Mobility of Arsenic in a Dimictic Lake. Environmental Science &Technology, 29, 2157–2161, 1995.
Stumm, W. and Morgan, J.J., Aquatic Chemistry, 2nd ed., Wiley-Interscience, New York, 583 p, 1981.
Sullivan, K.A. and Aller, R.C., Diagenetic cycling of arsenic in Amazon shelf sediments. Geochimica et Cosmochimica Acta, 60, 1465-1477, 1996.
Tseng, W.P., Chu, H.M., How, S.W., Fong, J.M., Lin, C.S. and Yeh, S., Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Cancer. Inst., 40(3), 453–463, 1986.
Tseng, C.H., Chong, C.K., Chen, C.J., Lin, B.J. and Tai, T.Y., Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. Int. J. Microcirc. Clinical Exp., 15, 21–27, 1995.
Wauchope, R.D., Fixation of arsenical herbicides, phosphates and arsenate in alluvial soils. J.Environ. Qual. 4(3):355–358, 1975.
Westerhoff, P., Haan, M. D., Martindale, A. and Badruzzaman, M., Arsenic Adsorptive Media Technology Selection Strategies. Water Quality Research Journal of Canada, 41(2), 171–184, 2006.
WHO, Guidelines for drinking water, WHO: Geneva. p 66, 1984.
WHO, Guidelines for drinking-water quality. Volume 1: Recommendations, 2nd ed. WHO, Geneva, 1993.
WHO, Environmental Health Criteria 224: Arsenic compounds 2nd edition. WHO, Geneva, 2001.
Wood, J.M., Biological Cycles for Toxic Elements in the Environment. Science, vol. 183, 1049–1052, 1974.
Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M. and Edmonds, JS., Human urine certified reference material for arsenic speciation. Clin. Chem., 46, 1781–1786, 2000.
Yan, X.P., Kerrich, R. and Hendry, M.J., Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica Et Cosmochimica Acta, 64(15), 2637–2648, 2000.
Yu, K.H., Chang, M.C., Yen, F.S. and Tsai, S.C., On the arsenic distribution along the coastline are of southwestern Taiwan. In: Geertman, R.M. (Ed.), 8th World Saly Symposium, May 7–11, 2000, 601–605, 2000.