| 研究生: |
吳侑峻 Wu, Yu-Chun |
|---|---|
| 論文名稱: |
骨的組織工程研究:利用聚乳酸-聚乙醇酸共聚物當作支架 Tissue Engineering of bone: PLGA-based materials as scaffold |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 聚乳酸-聚乙醇酸 、骨組織工程 |
| 外文關鍵詞: | bone tissue engineering, PLGA |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究是利用組織工程的策略來進行聚乳酸—聚乙醇酸高分子支架的製備改良以及利用老鼠頭蓋骨的生骨母細胞來進行各種支架評估,以期望找出適合發展骨組織工程的良好支架,並將所得到的評估結果留給後繼研究者做為支架改良的參考。在一連串的試驗,包括支架的製備、改質、含水率和降解性測試,發展出新的改良式支架製備方法。
此後,本研究使用生骨母細胞去探討孔洞及表面改質對於細胞黏著、增生和分化的影響。研究結果發現孔洞差異性在於125-500μm 對於老鼠生骨母細胞並無明顯影響,但是使用不同生物材料進行支架表面改質,卻會造成細胞行為的改變。在促進細胞黏著與增生方面,膠原蛋白會有促進的效果,而葡萄胺聚糖則有抑制的結果;在分化能力方面,葡萄胺聚糖則是有促進效果,而膠原蛋白則有抑制效果。這提供了一個新策略,我們可藉由支架的表面改質,來進行微環境(microenvironment)的模擬,加強細胞進行黏著、增生及分化之效果,以達到組織再生的目的。
In this study, we used poly(DL-lactic-co-glycolic acid) [PLGA] which has good biocompatibility and biodegradation as scaffold. We improved the surface fabrication on PLGA and evaluated its effect on osteoblast cell attachment, proliferation and differentiation. The result should provide valuable information for us to find out suitable scaffold for bone tissue engineering. The fabrication, modification, water absorption, and degradation of scaffold were used to develop a novel fabrication method. The in vitro study includes osteoblast cell isolation, seeding and culture in order to understand actions and response to different extracellular matrices. The result demonstrated that the pore size ranged from 125-500µm didn’t affect osteoblast cell phenotype. However, the surface modification of scaffold by other nature biomaterials did affect osteoblast phenotype. In the attachment and proliferation assays, collagen had the enhanced effect, but chitosan had the suppressed effect. In the differentiation assay, chitosan had the enhanced effect, but collagen had the suppressed effect. These results provide us a new strategy for mimicking microenvironment to enhance the cell adhesion, proliferation, differentiation on PLGA scaffold and can potentially be applied for tissue regeneration.
1. 王盈錦、蔡曉雯、張淑真。高分子生醫材料在組織修復上的運用。材料會訊,7(1),42-51(民89 年)。
2. 湯正明。可降解軟骨細胞之架之製備與評估。中興大學化工所碩士論文,(民88 年)。
3. 闕山璋。生醫材料於組織器官修補與再生應用之展望。材料會訊,7(1),3-7(民89 年)。
4. Atala, J. P. Vacanti, C. A. Peters, J. Mandell, A. B. Retik, and M. R.Freeman, "Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro," J Urol 148(2 Pt 2), 658-662 (1992).
5. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal,"Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers," Biomaterials 17(2),
6. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, "Role of material surfaces in regulating bone and cartilage cell response,"Biomaterials 17(2), 137-146 (1996).
7. K. L. Brown and R. L. Cruess, "Bone and cartilage transplantation in orthopaedic surgery. A review," J Bone Joint Surg Am 64(2), 270-279 (1982).
8. Du, F. Z. Cui, X. D. Zhu, and K. de Groot, "Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture," J Biomed Mater Res 44(4), 407-415 (1999).
9. W. H. Eaglstein and V. Falanga, "Tissue engineering and the development of Apligraf a human skin equivalent," Adv Wound Care 11(4 Suppl), 1-8 (1998).
10. W. F. Enneking, J. L. Eady, and H. Burchardt, "Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects," J Bone Joint Surg Am 62(7), 1039-1058 (1980).
11. L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer, "Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers," J Biomed Mater Res 27(1), 11-23 (1993).
12. R. Gepstein, R. E. Weiss, and T. Hallel, "Bridging large defects in bone by demineralized bone matrix in the form of a powder. A radiographic, histological, and radioisotope-uptake study in rats," J Bone Joint Surg Am 69(7), 984-992 (1987).
13. H. R. Lin, C. Y. Yang, S. Y. Shaw, Y. J. Wu, "Preparation of Macroporous Biodegradable PLGA Scaffolds for Cell Attachment with the Use of Mixed Salts as Porogen Additives," J Biomed Mater Res (Appl Biomater) 63, 271-279 (2002).
14. S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J.Yaszemski, and A. G. Mikos, "Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds," J Biomed Mater Res 36(1), 17-28 (1997).
15. P. Knox and P. Wells, "Cell adhesion and proteoglycans. I. The effect of exogenous proteoglycans on the attachment of chick embryo fibroblasts to tissue culture plastic and collagen," J Cell Sci 40, 77-88 (1979).
16. Lahiji, A. Sohrabi, D. S. Hungerford, and C. G. Frondoza, "Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes," J Biomed Mater Res 51(4), 586-595 (2000).
17. H. Lo, S. Kadiyala, S. E. Guggino, and K. W. Leong, "Poly(L-lactic acid) foams with cell seeding and controlled-release capacity," J Biomed Mater Res 30(4), 475-484 (1996).
18. G. Mikos, Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, and R.Langer, "Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation," J Biomed Mater Res 27(2),183-189 (1993).
19. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, "Laminated three-dimensional biodegradable foams for use in tissue engineering," Biomaterials 14(5), 323-330 (1993).
20. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, "Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture," Biomaterials 15(1), 55-58 (1994).
21. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer,"Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents," Biomaterials 17(14), 1417-1422 (1996).
22. R. A. Muzzarelli, C. Zucchini, P. Ilari, A. Pugnaloni, M. Mattioli Belmonte, G. Biagini, and C. Castaldini, "Osteoconductive properties of methylpyrrolidinone chitosan in an animal model,"Biomaterials 14(12), 925-929 (1993).
23. Y. S. Nam and T. G. Park, "Biodegradable polymeric microcellular foams by modified thermally induced phase separation method,"Biomaterials 20(19), 1783-1790 (1999).
24. Y. S. Nam, J. J. Yoon, and T. G. Park, "A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive," J Biomed Mater Res 53(1), 1-7 (2000).
25. M. Organ, D. J. Mooney, L. K. Hansen, B. Schloo, and J. P. Vacanti,"Transplantation of enterocytes utilizing polymer-cell constructs to produce a neointestine," Transplant Proc 24(6), 3009-3011 (1992).
26. K. Partridge, X. Yang, N. M. Clarke, Y. Okubo, K. Bessho, W. Sebald, S. M. Howdle, K. M. Shakesheff, and R. O. Oreffo,47 "Adenoviral BMP-2 Gene Transfer in Mesenchymal Stem Cells: In Vitro and in Vivo Bone Formation on Biodegradable Polymer Scaffolds," Biochem Biophys Res Commun 292(1), 144-152 (2002).
27. P. B. Saadeh, R. K. Khosla, B. J. Mehrara, D. S. Steinbrech, S. A. McCormick, D. P. DeVore, and M. T. Longaker, "Repair of a critical size defect in the rat mandible using allogenic type I collagen," J Craniofac Surg 12(6), 573-579 (2001).
28. N. Summers and S. M. Eisenstein, "Donor site pain from the ilium.A complication of lumbar spine fusion," J Bone Joint Surg Br 71(4),677-680 (1989).
29. J. J. Tiedeman, K. L. Garvin, T. A. Kile, and J. F. Connolly, "The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects," Orthopedics 18(12), 1153-1158 (1995).
30. Vacanti, R. Langer, B. Schloo, and J. P. Vacanti, "Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation," Plast Reconstr Surg 88(5), 753-759 (1991).
31. Vacanti, W. Kim, J. Upton, M. P. Vacanti, D. Mooney, B. Schloo,and J. P. Vacanti, "Tissue-engineered growth of bone and cartilage,"Transplant Proc 25(1 Pt 2), 1019-1021 (1993).