簡易檢索 / 詳目顯示

研究生: 標奕緯
Biao, Yi-Wei
論文名稱: 環境固相介質中持久性新興污染物之宿命與風險:以全氟烷基物質與塑膠微粒為例
Fate and Risk of Persistent Emerging Contaminants in Environmental Solid Matrices: Studies on Perfluoroalkyl Acids and Microplastics
指導教授: 陳𡡶如
Chen, Wan-Ru
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 202
中文關鍵詞: 全氟烷基酸物質(PFAAs)塑膠微粒(MPs)室內灰塵有機質特性河川底泥風險評估
外文關鍵詞: Perfluoroalkyl Acids (PFAAs), Microplastics, Indoor Dust, Organic Matter Characteristics, Riverine Sediment, Risk Assessment
ORCID: https://orcid.org/0009-0005-0044-1652
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新興污染物之廣泛存在,已對環境健康與生態系統完整性構成重大挑戰。雖然水體被視為污染物傳輸的主要途徑,固體環境基質往往作為此類持久性污染物最終匯集的「吸附匯」或「庇護所」。本研究旨在探討持久性新興污染物於固相介質中的宿命、傳輸與累積機制。具體而言,本研究探討於不同環境介質中固體基質對新興污染物宿命、傳輸與累積行為,分別以全氟烷基酸物質 (PFAAs) 於室內灰塵與高有機質土壤改良劑中之累積與傳輸,以及塑膠微粒 (MPs) 於河流流域尺度中作為顆粒污染物的宿命為研究對象。
    本研究第一部份(第三章),針對台灣台南地區多樣化的室內微環境 (實驗室、辦公室、宿舍和教室),分析了室內灰塵樣本中的 PFAAs 特徵。結果顯示 PFAAs 具有顯著的空間異質性,其中實驗室(中位數濃度 ΣPFAAs: 528.9 μg/kg) 與辦公室(中位數濃度 ΣPFAAs: 304.2 μg/kg) 被鑑定為主要的暴露熱點,其濃度顯著高於宿舍(中位數濃度 ΣPFAAs: 180.1 μg/kg) 與教室(中位數濃度 ΣPFAAs: 105.1 μg/kg)。本研究應用逐步群集分析證實室內灰塵中 PFAAs 的累積並非由 總有機碳「含量」主導,而是由陽離子含量與水分含量透過靜電與界面吸附作用所控制。健康風險評估顯示,透過室內灰塵暴露PFAAs之整體風險尚在可接受範圍 (Hazard Quotient<1),但在高使用率的環境中,經由灰塵攝入的慢性暴露仍值得關注。
    承接第三章的發現,於第四章中,本研究進一步闡明了有機碳「品質」與「含量」 對 PFAAs 吸附的辯證關係。透過批次與管柱實驗比較了兩種高碳含量的土壤改良劑:泥炭土與豬糞堆肥 (CSM)。結果顯示,儘管 CSM 的有機碳含量低於泥炭土,但其對長鏈 PFAAs 展現出顯著較高的吸附親和力與遲滯。本研究證實,有機質的孔隙結構(「窄喉」效應)與特定的官能基組成(含氮基團)是決定PFAAs遲滯的關鍵,而非僅取決於碳總量。
    於第五章,本研究透過全年度的監測,解析了鹽水溪流域中塑膠微粒的時空分布。研究發現 MPs 檢出率100%,河川水體平均豐度為235.1 items/L,而作為主要匯的底泥 (平均 20,370 items/kg),其累積濃度比水體高出 1-2 個數量級。冗餘分析指出農業土地利用是水體污染的主要驅動因子。本研究觀察到明顯的季節性「沖刷與填充」機制:豐水期的水流會動員MPs(沖刷),而枯水期的低流量則促進較高密度聚合物在底泥中的沉積 (填充)。此外,本研究揭示了關鍵的「豐度-風險脫節」現象。雖然基於豐度的指標(污染負荷指數 PLI)顯示風險較低,但基於毒性的指標 (聚合物風險指數 PRI) 卻揭示了由 PVC 和 PU 等高危害聚合物驅動的高生態風險,凸顯了進行聚合物特異性風險評估的必要性。
    綜合上述研究結果,本研究指出 PFAAs 於固體介質中的行為主要受物理化學交互作用(包含靜電力、含水率與有機質品質)所控制,而河川沉積物中微塑膠的分布與累積則主要由流域尺度之水文動力與土地利用型態所驅動。基於此,本研究主張環境管理策略應由傳統之濃度監測,轉向以有機質特性與聚合物毒性為核心的管理模式,以有效降低「永久性化學物質」與塑膠污染於固體環境基質中的長期風險。整體而言,本研究確立固體環境基質(包含室內粉塵、有機質改良土壤與河川沉積物)是持久性污染物滯留、傳輸與風險的「匯」,並強調未來污染物宿命評估與環境管理體系中,納入基質特異性機制之必要性。

    The ubiquity of emerging contaminants (ECs) poses a significant challenge to environmental health and ecosystem integrity. While water is considered the primary transport vector, solid matrices often function as the ultimate "sinks" or "shelters" for these persistent contaminants. This study investigates the fate, transport, and accumulation mechanisms of ECs across distinct environmental compartments. Specifically, this study examines perfluoroalkyl acids (PFAAs) in indoor dust and organic-amended soils, and microplastics (MPs) as particulate contaminants in a riverine basin.
    In the first part of the study (Chapter III), PFAAs were characterized in indoor dust samples across diverse indoor micro-environments (laboratories, offices, dormitories, and classrooms) in Tainan, Taiwan. Results revealed significant spatial heterogeneity, with laboratories (median ΣPFAAs: 528.9 μg/kg) and offices (median ΣPFAAs: 304.2 μg/kg) identified as exposure hotspots compared to dormitories (median ΣPFAAs: 180.1 μg/kg) and classrooms (median ΣPFAAs: 105.1 μg/kg). Crucially, the application of stepwise cluster analysis challenged the traditional theory that relies solely on organic carbon (TOC) partitioning. This study demonstrated that PFAA accumulation in indoor dust is not dominated by TOC content but is controlled by moisture content and cation content through electrostatic interactions and interfacial adsorption. Health risk assessments indicated that while overall risks were acceptable (Hazard Quotient < 1), chronic exposure via dust ingestion remains a concern in high-occupancy environments.
    Building on Chapter III, the second part (Chapter IV) further elucidated the dialectical relationship between organic carbon quality and quantity in PFAAs sorption. Batch and column experiments compared two high-carbon amendments: peat and composted swine manure (CSM). Results showed that despite having lower TOC content than peat, CSM exhibited significantly higher sorption affinity and retardation for long-chain PFAAs. This study demonstrated that microscopic pore architecture ("narrow throat" entrapment effect) and specific functional group composition (nitrogenous groups) are the key determinants of PFAAs retardation, rather than total carbon quantity alone.
    The third part of the study, Chapter V, characterizes the spatiotemporal distribution of MPs in the Yanshui River Basin through a year-round monitoring campaign. MPs were ubiquitous (detection frequency 100%), with surface water abundance averaging 235.1 items/L, while riverine sediment (average 20,370 items/kg) served as a major sink, accumulating concentrations 1-2 orders of magnitude higher than in surface water. Redundancy analysis identified agricultural land use as a primary driver for surface water pollution. A distinct seasonal "flush and fill" regime was observed: wet season flows mobilized MPs (flush), while dry season low-flows facilitated the deposition of denser polymers into sediments (fill). Furthermore, this study highlighted a critical "Abundance-Risk Disconnect." While abundance-based metrics (Pollution Load Index) suggested low risk, toxicity-based metrics (Polymer Risk Index) revealed high ecological risks driven by hazardous polymers like PVC and PU, underscoring the necessity of polymer-specific risk assessment.
    Integrating these findings, this study concludes that PFAAs are controlled by physicochemical interactions (electrostatics, moisture, and organic matter quality), while MPs in riverine sediments are influenced by basin-scale hydrodynamic drivers (seasonal flow/land use). These insights advocate for a shift in environmental management strategies from simple concentration monitoring to control based on organic matter characteristics and polymer toxicity, to effectively mitigate the risks of "forever chemicals" and plastic pollution in solid environmental matrices. Overall, this study demonstrates that solid environmental matrices, including dust, amended soils, and riverine sediments, play a critical role as sinks for the retention, transport, and risk expression of persistent contaminants, emphasizing the need to incorporate matrix-specific mechanisms into future fate assessment and environmental management frameworks.

    摘要 I Abstract III 誌謝 VI Contents VIII List of Tables XII List of Figures XIV Chapter I Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 1.3 Dissertation Structure 5 Chapter II Literature Review 7 2.1 Global Perspectives on Emerging Contaminants (ECs) 7 2.1.1 The Rise of "Forever Chemicals" and the "Plastic Age" 7 2.1.2 Multi-media Distribution and Environmental Persistence 9 2.2 Perfluoroalkyl Acids (PFAAs) 10 2.2.1 From the PFAS Universe to PFAAs 10 2.2.2 Physicochemical Properties 11 2.2.3 Sources and Fate in the Indoor Environment 12 2.2.4 Human Exposure Pathways and Health Risks 13 2.3 Microplastics (MPs) 15 2.3.1 Classification, Sources, and Environmental Weathering 15 2.3.2 The Role of Land Use and Basin Characteristics 16 2.3.3 Ecological Risks and Toxicity Assessment 18 2.4 PFAAs and MPs Accumulation Mechanism in Solid Matrices 20 2.4.1 Environmental Solid Matrices: Physicochemical Heterogeneity and Influence on Contaminant Fate 20 2.4.2 Sorption Mechanisms of PFAAs in Indoor Dust and Soil: Insights from Organic Carbon Characteristics 23 2.4.3 Transport and Deposition of MPs in Riverine Sediment 25 2.5 Synthesis and Research Opportunities 28 Chapter III Factors affecting the occurrence and accumulation of perfluoroalkyl acids in indoor dust in Tainan, Taiwan 29 3.1 Abstract 29 3.2 Introduction 31 3.3 Materials and methods 34 3.3.1 Chemicals and reagents 34 3.3.2 Indoor dust sampling and characterization 34 3.3.3 PFAAs extraction and analysis 36 3.3.4 Quality assurance and quality control for PFAAs analysis and extraction 38 3.3.5 Average daily intake and risk assessment 39 3.3.6 Statistical analysis 40 3.4 Results and discussion 41 3.4.1 Concentration of PFAAs in indoor dust samples 41 3.4.2 PFAAs profiles in different indoor space types and heights 43 3.4.3 Exposure and risk assessment 49 3.4.4 Influence of indoor dust characteristics on PFAAs accumulation 51 3.4.5 Conclusion 58 Appendix 59 Chapter IV Influence of Organic Matter Characteristics on PFAAs Sorption and Transport: Evaluation of Peat and Composted Swine Manure Using Batch and Column Tests 65 4.1 Abstract 65 4.2 Introduction 66 4.3 Materials and methods 70 4.3.1 Chemicals and reagents 70 4.3.2 Soil preparation and properties 70 4.3.3 Batch sorption experiments 73 4.3.4 Column experiments 75 4.3.5 PFAAs Analytical Method 78 4.3.6 Data analysis 78 4.4 Results and discussion 81 4.4.1 Characterization of Organic-rich Soils (Peat Soil and CSM) 81 4.4.2 PFAAs sorption kinetics 84 4.4.3 PFAAs sorption isotherms 87 4.4.4 Column Transport Experiments 95 4.4.5 Conclusion 102 Appendix 104 Chapter V Seasonal and Spatial Variation, and Land-Use Influences on Riverine Microplastics and Their Ecological Risks in the Yanshui River Basin 108 5.1 Abstract 108 5.2 Introduction 110 5.3 Materials and methods 114 5.3.1 Chemicals and materials 114 5.3.2 Study area and sampling design 115 5.3.3 Microplastics extraction and detection 117 5.4 Results and discussion 129 5.4.1 Microplastics abundance and distribution 129 5.4.2 Microplastics characteristics in surface water and sediment 145 5.4.3 Influence of land use on microplastics 148 5.4.4 Ecological risk assessment 155 5.5 Conclusion 160 Chapter VI Conclusions and Future Perspectives 161 6.1 General conclusions 161 6.1.1 PFAAs in Indoor Dust 161 6.1.2 Influence of Organic Matter Characteristics on PFAAs Sorption 162 6.1.3 Microplastics in Riverine Systems 163 6.2 Future Perspectives 164 References 166

    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-33.
    Alam, F.C., Sembiring, E., Muntalif, B.S., Suendo, V., 2019. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere 224, 637-645.
    Aly, Y.H., McInnis, D.P., Lombardo, S.M., Arnold, W.A., Pennell, K.D., Hatton, J., Simcik, M.F., 2019. Enhanced adsorption of perfluoro alkyl substances for in situ remediation. Environmental Science: Water Research & Technology 5, 1867-1875.
    An, L., Liu, Q., Deng, Y., Wu, W., Gao, Y., Ling, W., 2020. Sources of microplastic in the environment. Microplastics in terrestrial environments: Emerging contaminants and major challenges, 143-159.
    Andrady, A.L., 2017. The plastic in microplastics: A review. Marine pollution bulletin 119, 12-22.
    Ao, J., Yuan, T., Xia, H., Ma, Y., Shen, Z., Shi, R., Tian, Y., Zhang, J., Ding, W., Gao, L., Zhao, X., Yu, X., 2019. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. Environmental Pollution 254, 112873.
    APHA, 1992. Method Detection Limit, Standard Methods, 18th Edition.
    Ateia, M., Alsbaiee, A., Karanfil, T., Dichtel, W., 2019. Efficient PFAS removal by amine-functionalized sorbents: critical review of the current literature. Environmental Science & Technology Letters 6, 688-695.
    Büks, F., Kaupenjohann, M., 2020. Global concentrations of microplastic in soils, a review. Soil Discussions 2020, 1-26.
    Baes, A., Bloom, P., 1989. Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Science Society of America Journal 53, 695-700.
    Bank, M.S., Ok, Y.S., Swarzenski, P.W., 2020. Microplastic's role in antibiotic resistance. Science 369, 1315-1315.
    Bardestani, R., Patience, G.S., Kaliaguine, S., 2019. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 97, 2781-2791.
    Bečanová, J., Melymuk, L., Vojta, Š., Komprdová, K., Klánová, J., 2016. Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere 164, 322-329.
    Becker, A.M., Gerstmann, S., Frank, H., 2008. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany. Environmental Pollution 156, 818-820.
    Biao, Y.-W., Xu, J.-Y., Chen, W.-R., 2024. Factors affecting the occurrence and accumulation of perfluoroalkyl acids in indoor dust in Tainan, Taiwan. Chemosphere 349, 140882.
    Biao, Y.-W., Zheng, H.-M., Chen, W.-R., 2025. Seasonal and Spatial Variation, and Land-Use Influences on Riverine Microplastics and Their Ecological Risks in the Yanshui River Basin. Journal of Environmental Chemical Engineering, 120461.
    Brendel, S., Fetter, É., Staude, C., Vierke, L., Biegel-Engler, A., 2018. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe 30, 9.
    Brusseau, M.L., Anderson, R.H., Guo, B., 2020. PFAS concentrations in soils: Background levels versus contaminated sites. Science of the Total environment 740, 140017.
    Brusseau, M.L., Jessup, R.E., Rao, P.S.C., 1991. Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environmental Science & Technology 25, 134-142.
    Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., De Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., Van Leeuwen, S.P., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management 7, 513-541.
    Butte, W., Heinzow, B., 2002. Pollutants in house dust as indicators of indoor contamination. Reviews of environmental contamination and toxicology 175, 1-46.
    Cai, H., Chen, M., Chen, Q., Du, F., Liu, J., Shi, H., 2020. Microplastic quantification affected by structure and pore size of filters. Chemosphere 257, 127198.
    Chen, Y.-C., Lo, S.-L., Li, N.-H., Lee, Y.-C., Kuo, J., 2013. Sorption of perfluoroalkyl substances (PFASs) onto wetland soils. Desalination and Water Treatment 51, 7469-7475.
    Cheng, Y., An, Q., Qi, H., Li, R., Liu, W., Gu, B., Liu, K., 2023. Temporal trends of legacy and emerging PFASs from 2011 to 2021 in agricultural soils of eastern China: impacts of the Stockholm convention. Environmental Science & Technology 57, 9277-9286.
    Cheng, Y., Wang, J., Yi, X., Li, L., Liu, X., Ru, S., 2020. Low microalgae availability increases the ingestion rates and potential effects of microplastics on marine copepod Pseudodiaptomus annandalei. Marine Pollution Bulletin 152, 110919.
    Cheung, C.K.H., Not, C., 2023. Impacts of extreme weather events on microplastic distribution in coastal environments. Science of The Total Environment 904, 166723.
    Chiou, C.T., 1989. Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. Reactions and movement of organic chemicals in soils 22, 1-29.
    Chiou, C.T., Peters, L.J., Freed, V.H., 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831-832.
    Choi, Y.R., Kim, Y.-N., Yoon, J.-H., Dickinson, N., Kim, K.-H., 2021. Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. Journal of Soils and Sediments 21, 1962-1973.
    Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environmental science & technology 47, 6646-6655.
    Cousins, I.T., Johansson, J.H., Salter, M.E., Sha, B., Scheringer, M., 2022. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology 56, 11172-11179.
    Crew, A., Gregory-Eaves, I., Ricciardi, A., 2020. Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River. Environmental Pollution 260, 113994.
    Dai, L., Wang, Z., Guo, T., Hu, L., Chen, Y., Chen, C., Yu, G., Ma, L.Q., Chen, J., 2022. Pollution characteristics and source analysis of microplastics in the Qiantang River in southeastern China. Chemosphere 293, 133576.
    Ding, L., Mao, R.f., Guo, X., Yang, X., Zhang, Q., Yang, C., 2019. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of The Total Environment 667, 427-434.
    Ding, Y., Sha, C., Wang, T., 2025. Seasonal dynamics of microplastics in the central South China Sea: Abundance, sources, influencing factors, and ecological risks. Journal of Environmental Chemical Engineering 13, 115937.
    Dodson, G.Z., Shotorban, A.K., Hatcher, P.G., Waggoner, D.C., Ghosal, S., Noffke, N., 2020. Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Marine Pollution Bulletin 151, 110869.
    Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B., 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental pollution 221, 453-458.
    Drummond, J.D., Schneidewind, U., Li, A., Hoellein, T.J., Krause, S., Packman, A.I., 2022. Microplastic accumulation in riverbed sediment via hyporheic exchange from headwaters to mainstems. Science Advances 8, eabi9305.
    Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., Yu, G., 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of hazardous materials 274, 443-454.
    ECHA, 2023. ANNEX XV Restriction Report. European Chemicals Agency.
    Eichler, C., Bi, C., Wang, C., Little, J.C., 2022. A modular mechanistic framework for estimating exposure to SVOCs: Next steps for modeling emission and partitioning of plasticizers and PFAS. Journal of Exposure Science & Environmental Epidemiology, 1-10.
    EuropePlastic, 2024. Plastics – the fast Facts 2024. Plastics Europe.
    Fan, Y., Zheng, K., Zhu, Z., Chen, G., Peng, X., 2019. Distribution, sedimentary record, and persistence of microplastics in the Pearl River catchment, China. Environmental Pollution 251, 862-870.
    Fenton, S.E., Ducatman, A., Boobis, A., DeWitt, J.C., Lau, C., Ng, C., Smith, J.S., Roberts, S.M., 2021. Per‐and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environmental toxicology and chemistry 40, 606-630.
    Franco, A.A., Iglesias-Arroyo, D., Egea-Corbacho, Á., Martín-García, A.P., Quiroga, J.M., Coello, M.D., 2023. Influence of tourism on microplastic contamination at wastewater treatment plants in the coastal municipality of Chiclana de la Frontera. Science of The Total Environment 900, 165573.
    Frei, S., Piehl, S., Gilfedder, B.S., Löder, M.G., Krutzke, J., Wilhelm, L., Laforsch, C., 2019. Occurence of microplastics in the hyporheic zone of rivers. Scientific reports 9, 15256.
    Fromme, H., Tittlemier, S.A., Völkel, W., Wilhelm, M., Twardella, D., 2009. Perfluorinated compounds–exposure assessment for the general population in Western countries. International journal of hygiene and environmental health 212, 239-270.
    Gagliano, E., Sgroi, M., Falciglia, P.P., Vagliasindi, F.G.A., Roccaro, P., 2020. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research 171, 115381.
    Galafassi, S., Nizzetto, L., Volta, P., 2019. Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science of The Total Environment 693, 133499.
    Gamerdinger, A., Wagenet, R., Van Genuchten, M.T., 1990. Application of two‐site/two‐region models for studying simultaneous nonequilibrium transport and degradation of pesticides. Soil Science Society of America Journal 54, 957-963.
    Giardino, M., Balestra, V., Janner, D., Bellopede, R., 2023. Automated method for routine microplastic detection and quantification. Science of the Total Environment 859, 160036.
    Giesy, J.P., Kannan, K., 2002. Peer reviewed: perfluorochemical surfactants in the environment. Environmental science & technology 36, 146A-152A.
    Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., Wang, Z., 2020. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts 22, 2345-2373.
    Godoy, V., Blázquez, G., Calero, M., Quesada, L., Martín-Lara, M., 2019. The potential of microplastics as carriers of metals. Environmental Pollution 255, 113363.
    González-Fernández, D., Cózar, A., Hanke, G., Viejo, J., Morales-Caselles, C., Bakiu, R., Barceló, D., Bessa, F., Bruge, A., Cabrera, M., 2021. Floating macrolitter leaked from Europe into the ocean. Nature Sustainability 4, 474-483.
    Goosey, E., Harrad, S., 2011. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environment international 37, 86-92.
    Goss, K.-U., 2004. The air/surface adsorption equilibrium of organic compounds under ambient conditions. Critical Reviews in Environmental Science and Technology 34, 339-389.
    Grandjean, P., Andersen, E.W., Budtz-Jørgensen, E., Nielsen, F., Mølbak, K., Weihe, P., Heilmann, C., 2012. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. Jama 307, 391-397.
    Grbić, J., Helm, P., Athey, S., Rochman, C.M., 2020. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Research 174, 115623.
    Guelfo, J.L., Higgins, C.P., 2013. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Environmental science & technology 47, 4164-4171.
    Guelfo, J.L., Wunsch, A., McCray, J., Stults, J.F., Higgins, C.P., 2020. Subsurface transport potential of perfluoroalkyl acids (PFAAs): Column experiments and modeling. Journal of Contaminant Hydrology 233, 103661.
    Guo, W., Huo, S., Feng, J., Lu, X., 2017. Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures. Journal of the Taiwan Institute of Chemical Engineers 78, 265-271.
    Haimbaugh, A., Meyer, D.N., Connell, M.L., Blount-Pacheco, J., Tolofari, D., Gonzalez, G., Banerjee, D., Norton, J., Miller, C.J., Baker, T.R., 2024. Environmental Exposure to Per-and Polyfluorylalkyl Substances (PFASs) and Reproductive Outcomes in the General Population: A Systematic Review of Epidemiological Studies. International Journal of Environmental Research and Public Health 21, 1615.
    Hall, S.M., Patton, S., Petreas, M., Zhang, S., Phillips, A.L., Hoffman, K., Stapleton, H.M., 2020. Per-and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America. Environmental science & technology 54, 14558-14567.
    Han, M., Niu, X., Tang, M., Zhang, B.-T., Wang, G., Yue, W., Kong, X., Zhu, J., 2020. Distribution of microplastics in surface water of the lower Yellow River near estuary. Science of The Total Environment 707, 135601.
    Harner, T., Bidleman, T.F., 1998. Measurement of octanol− air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. Journal of Chemical & Engineering Data 43, 40-46.
    He, P., Chen, L., Shao, L., Zhang, H., Lü, F., 2019. Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate. Water Research 159, 38-45.
    Henry, B.J., Carlin, J.P., Hammerschmidt, J.A., Buck, R.C., Buxton, L.W., Fiedler, H., Seed, J., Hernandez, O., 2018. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integrated Environmental Assessment and Management 14, 316-334.
    Higgins, C.P., Field, J.A., Criddle, C.S., Luthy, R.G., 2005. Quantitative Determination of Perfluorochemicals in Sediments and Domestic Sludge. Environmental Science & Technology 39, 3946-3956.
    Higgins, C.P., Luthy, R.G., 2006. Sorption of perfluorinated surfactants on sediments. Environmental science & technology 40, 7251-7256.
    Hitchcock, J.N., 2020. Storm events as key moments of microplastic contamination in aquatic ecosystems. Science of The Total Environment 734, 139436.
    Ho, Y.-S., 2006. Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods. Polish journal of environmental studies 15.
    Hoellein, T.J., Rochman, C.M., 2021. The “plastic cycle”: a watershed‐scale model of plastic pools and fluxes. Frontiers in Ecology and the Environment 19, 176-183.
    Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the total environment 586, 127-141.
    Hsu, J.-H., Lo, S.-L., 1999. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental pollution 104, 189-196.
    Huang, G., Huang, Y., Wang, G., Xiao, H., 2006. Development of a forecasting system for supporting remediation design and process control based on NAPL‐biodegradation simulation and stepwise‐cluster analysis. Water resources research 42.
    Huang, W., Peng, P.a., Yu, Z., Fu, J., 2003. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied geochemistry 18, 955-972.
    Huber, S., Brox, J., 2015. An automated high-throughput SPE micro-elution method for perfluoroalkyl substances in human serum. Analytical and bioanalytical chemistry 407, 3751-3761.
    Huber, S., Haug, L.S., Schlabach, M., 2011. Per- and polyfluorinated compounds in house dust and indoor air from northern Norway – A pilot study. Chemosphere 84, 1686-1693.
    Hurley, R., Woodward, J., Rothwell, J.J., 2018. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience 11, 251-257.
    Inbar, Y., Chen, Y., Hadar, Y., 1989. Solid‐state carbon‐13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Science Society of America Journal 53, 1695-1701.
    Isari, E.A., Papaioannou, D., Kalavrouziotis, I.K., Karapanagioti, H.K., 2021. Microplastics in agricultural soils: A case study in cultivation of watermelons and canning tomatoes. Water 13, 2168.
    Ishimura, T., Iwai, I., Matsui, K., Mattonai, M., Watanabe, A., Robberson, W., Cook, A.-M., Allen, H.L., Pipkin, W., Teramae, N., Ohtani, H., Watanabe, C., 2021. Qualitative and quantitative analysis of mixtures of microplastics in the presence of calcium carbonate by pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis 157, 105188.
    Islam, M.N., Khan, M.N., Mallik, A.K., Rahman, M.M., 2019. Preparation of bio-inspired trimethoxysilyl group terminated poly (1-vinylimidazole)-modified-chitosan composite for adsorption of chromium (VI) ions. Journal of hazardous materials 379, 120792.
    Ji, W., Xiao, L., Ling, Y., Ching, C., Matsumoto, M., Bisbey, R.P., Helbling, D.E., Dichtel, W.R., 2018. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. Journal of the American Chemical Society 140, 12677-12681.
    Jian, J.-M., Guo, Y., Zeng, L., Liang-Ying, L., Lu, X., Wang, F., Zeng, E.Y., 2017. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–A review. Environment International 108, 51-62.
    Kabiri, S., Navarro, D.A., Hamad, S.A., Grimison, C., Higgins, C.P., Mueller, J.F., Kookana, R.S., McLaughlin, M.J., 2023. Physical and chemical properties of carbon-based sorbents that affect the removal of per-and polyfluoroalkyl substances from solution and soil. Science of the Total Environment 875, 162653.
    Kaiser, D., Kowalski, N., Waniek, J.J., 2017. Effects of biofouling on the sinking behavior of microplastics. Environmental research letters 12, 124003.
    Karickhoff, S.W., 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10, 833-846.
    Karásková, P., Venier, M., Melymuk, L., Bečanová, J., Vojta, Š., Prokeš, R., Diamond, M.L., Klánová, J., 2016. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International 94, 315-324.
    Kieu-Le, T.-C., Thuong, Q.-T., Truong, T.-N.-S., Le, T.-M.-T., Tran, Q.-V., Strady, E., 2023. Baseline concentration of microplastics in surface water and sediment of the northern branches of the Mekong River Delta, Vietnam. Marine Pollution Bulletin 187, 114605.
    Kim, D.-H., Lee, J.-H., Oh, J.-E., 2019. Perfluoroalkyl acids in paired serum, urine, and hair samples: Correlations with demographic factors and dietary habits. Environmental Pollution 248, 175-182.
    Kissa, E., 2001. Fluorinated surfactants and repellents. CRC Press.
    Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology 11, 231-252.
    Knobeloch, L., Imm, P., Anderson, H., 2012. Perfluoroalkyl chemicals in vacuum cleaner dust from 39 Wisconsin homes. Chemosphere 88, 779-783.
    Kole, P.J., Löhr, A.J., Van Belleghem, F.G., Ragas, A.M., 2017. Wear and tear of tyres: a stealthy source of microplastics in the environment. International journal of environmental research and public health 14, 1265.
    Kooi, M., Besseling, E., Kroeze, C., Van Wezel, A.P., Koelmans, A.A., 2018. Modeling the fate and transport of plastic debris in freshwaters: review and guidance.
    Krebsbach, S., He, J., Adhikari, S., Olshansky, Y., Feyzbar, F., Davis, L.C., Oh, T.-S., Wang, D., 2023. Mechanistic understanding of perfluorooctane sulfonate (PFOS) sorption by biochars. Chemosphere 330, 138661.
    Kubwabo, C., Kosarac, I., Lalonde, K., 2013. Determination of selected perfluorinated compounds and polyfluoroalkyl phosphate surfactants in human milk. Chemosphere 91, 771-777.
    Kumar, V., Umesh, M., Chakraborty, P., Sharma, P., Sarojini, S., Basheer, T., Kaur, K., Pasrija, R., Barcelo, D., 2024. Origin, ecotoxicity, and analytical methods for microplastic detection in aquatic systems. TrAC Trends in Analytical Chemistry 170, 117392.
    Kwadijk, C., Korytar, P., Koelmans, A., 2010. Distribution of perfluorinated compounds in aquatic systems in the Netherlands. Environmental science & technology 44, 3746-3751.
    Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances.
    Lahens, L., Strady, E., Kieu-Le, T.-C., Dris, R., Boukerma, K., Rinnert, E., Gasperi, J., Tassin, B., 2018. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environmental Pollution 236, 661-671.
    Lambert, S., Wagner, M., 2018. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater microplastics: emerging environmental contaminants, 1-23.
    Layton, D.W., Beamer, P.I., 2009. Migration of contaminated soil and airborne particulates to indoor dust. Environmental science & technology 43, 8199-8205.
    Lebreton, L.C., Van Der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s oceans. Nature communications 8, 15611.
    Lechner, A., Ramler, D., 2015. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environmental Pollution 200, 159-160.
    Lei, X., Lian, Q., Zhang, X., Karsili, T.K., Holmes, W., Chen, Y., Zappi, M.E., Gang, D.D., 2023. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. Environmental Pollution 321, 121138.
    Li, F., Fang, X., Zhou, Z., Liao, X., Zou, J., Yuan, B., Sun, W., 2019. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Science of The Total Environment 649, 504-514.
    Li, M., Ou, J., Chen, Z., 2025. Settling behavior of microplastic hetero-aggregates in aquatic environments with varying salinity. International Journal of Sediment Research.
    Li, Y., Peng, L., Fu, J., Dai, X., Wang, G., 2022. A microscopic survey on microplastics in beverages: the case of beer, mineral water and tea. Analyst 147, 1099-1105.
    Li, Y., Tao, L., Wang, Q., Wang, F., Li, G., Song, M., 2023. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environment & Health 1, 249-257.
    Li, Y., Wei, M., 2022. Evaluation on adsorption capacity of low organic matter soil for hydrophobic organic pollutant. Journal of Environmental Chemical Engineering 10, 107561.
    Lin, Y., Wang, Y., Ho, Y.-W., Fang, J.K.-H., Li, Y., 2024. Characterization and ecological risks of microplastics in urban road runoff. Science of The Total Environment 954, 176590.
    Lindstrom, A.B., Strynar, M.J., Libelo, E.L., 2011. Polyfluorinated Compounds: Past, Present, and Future. Environmental Science & Technology 45, 7954-7961.
    Lithner, D., Larsson, Å., Dave, G., 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the total environment 409, 3309-3324.
    Liu, G., Wei, X., Luo, P., Dai, S., Zhang, W., Zhang, Y., 2022. Novel fluorinated nitrogen-rich porous organic polymer for efficient removal of perfluorooctanoic acid from water. Water 14, 1010.
    Liu, Q., Xiong, X., Wang, K., Wang, H., Ling, Y., Li, Q., Xu, F., Wu, C., 2023. Homogenization of microplastics in alpine rivers: Analysis of microplastic abundance and characteristics in rivers of Qilian Mountain, China. Journal of Environmental Management 340, 118011.
    Lu, Y., Lu, Y.-C., Hu, H.-Q., Xie, F.-J., Wei, X.-Y., Fan, X., 2017. Structural characterization of lignin and its degradation products with spectroscopic methods. Journal of spectroscopy 2017, 8951658.
    Luo, S., Wu, H., Xu, J., Wang, X., He, X., Li, T., 2024. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. Journal of Hazardous Materials 465, 133115.
    Lv, X., Sun, Y., Ji, R., Gao, B., Wu, J., Lu, Q., Jiang, H., 2018. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. Water Research 141, 251-258.
    Maimaiti, A., Deng, S., Meng, P., Wang, W., Wang, B., Huang, J., Wang, Y., Yu, G., 2018. Competitive adsorption of perfluoroalkyl substances on anion exchange resins in simulated AFFF-impacted groundwater. Chemical Engineering Journal 348, 494-502.
    Matsueda, M., Mattonai, M., Iwai, I., Watanabe, A., Teramae, N., Robberson, W., Ohtani, H., Kim, Y.-M., Watanabe, C., 2021. Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS. Journal of Analytical and Applied Pyrolysis 154, 104993.
    Mercier, F., Glorennec, P., Thomas, O., Bot, B.L., 2011. Organic Contamination of Settled House Dust, A Review for Exposure Assessment Purposes. Environmental Science & Technology 45, 6716-6727.
    Miao, Y., Guo, X., Dan, P., Fan, T., Yang, C., 2017. Rates and equilibria of perfluorooctanoate (PFOA) sorption on soils from different regions of China. Ecotoxicology and Environmental Safety 139, 102-108.
    Michels, J., Stippkugel, A., Lenz, M., Wirtz, K., Engel, A., 2018. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proceedings of the Royal Society B 285, 20181203.
    Milinovic, J., Lacorte, S., Vidal, M., Rigol, A., 2015. Sorption behaviour of perfluoroalkyl substances in soils. Science of The Total Environment 511, 63-71.
    Min, R., Ma, K., Zhang, H., Zhang, J., Yang, S., Zhou, T., Zhang, G., 2023. Distribution and risk assessment of microplastics in Liujiaxia Reservoir on the upper Yellow River. Chemosphere 320, 138031.
    MOENV, 2026. National Platform for Livestock Waste Resource Recovery, Taiwan. in: Protection, W.Q. (Ed.).
    Mohamed Nor, N.H., Kooi, M., Diepens, N.J., Koelmans, A.A., 2021. Lifetime accumulation of microplastic in children and adults. Environmental science & technology 55, 5084-5096.
    Nguyen, T.M.H., Bräunig, J., Thompson, K., Thompson, J., Kabiri, S., Navarro, D.A., Kookana, R.S., Grimison, C., Barnes, C.M., Higgins, C.P., McLaughlin, M.J., Mueller, J.F., 2020. Influences of Chemical Properties, Soil Properties, and Solution pH on Soil–Water Partitioning Coefficients of Per- and Polyfluoroalkyl Substances (PFASs). Environmental Science & Technology 54, 15883-15892.
    Nizzetto, L., Futter, M., Langaas, S., 2016. Are agricultural soils dumps for microplastics of urban origin? ACS Publications.
    Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I., Thompson, R.C., 2014. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future 2, 315-320.
    Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L., Zobel, L.R., 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental health perspectives 115, 1298-1305.
    Ozguler, U., Demir, A., Kayadelen, G., KIDEYŞ, A., 2022. Riverine microplastic loading to mersin bay, Turkey on the north-eastern mediterranean. Turkish Journal of Fisheries and Aquatic Sciences 22.
    Pan, Z., Liu, Q., Jiang, R., Li, W., Sun, X., Lin, H., Jiang, S., Huang, H., 2021. Microplastic pollution and ecological risk assessment in an estuarine environment: The Dongshan Bay of China. Chemosphere 262, 127876.
    Peng, G., Bellerby, R., Zhang, F., Sun, X., Li, D., 2020. The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution. Water research 168, 115121.
    Perret, J., Prasher, S., Kantzas, A., Hamilton, K., Langford, C., 2000. Preferential solute flow in intact soil columns measured by SPECT scanning. Soil Science Society of America Journal 64, 469-477.
    Persson, L., Carney Almroth, B.M., Collins, C.D., Cornell, S., de Wit, C.A., Diamond, M.L., Fantke, P., Hassellöv, M., MacLeod, M., Ryberg, M.W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., Hauschild, M.Z., 2022. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environmental Science & Technology 56, 1510-1521.
    Pignatello, J.J., Xing, B., 1996. Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles. Environmental Science & Technology 30, 1-11.
    Prasittisopin, L., Ferdous, W., Kamchoom, V., 2023. Microplastics in construction and built environment. Developments in the Built Environment 15, 100188.
    Prata, J.C., Godoy, V., da Costa, J.P., Calero, M., Martín-Lara, M.A., Duarte, A.C., Rocha-Santos, T., 2021. Microplastics and fibers from three areas under different anthropogenic pressures in Douro river. Science of The Total Environment 776, 145999.
    Prata, J.C., Reis, V., Matos, J.T., da Costa, J.P., Duarte, A.C., Rocha-Santos, T., 2019. A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). Science of the total environment 690, 1277-1283.
    Puts, G.J., Crouse, P., Ameduri, B.M., 2019. Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. Chemical Reviews 119, 1763-1805.
    Rayne, S., Forest, K., 2009. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health Part A 44, 1145-1199.
    Rezanezhad, F., Price, J.S., Quinton, W.L., Lennartz, B., Milojevic, T., Van Cappellen, P., 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology 429, 75-84.
    Rillig, M.C., Kim, S.W., Kim, T.-Y., Waldman, W.R., 2021. The global plastic toxicity debt. Environmental Science & Technology 55, 2717-2719.
    Rochman, C.M., 2018. Microplastics research—from sink to source. Science 360, 28-29.
    Roosens, L., D’Hollander, W., Bervoets, L., Reynders, H., Van Campenhout, K., Cornelis, C., Van Den Heuvel, R., Koppen, G., Covaci, A., 2010. Brominated flame retardants and perfluorinated chemicals, two groups of persistent contaminants in Belgian human blood and milk. Environmental Pollution 158, 2546-2552.
    Rutherford, D.W., Chiou, C.T., Kile, D.E., 1992. Influence of soil organic matter composition on the partition of organic compounds. Environmental science & technology 26, 336-340.
    Schaefer, C.E., Culina, V., Nguyen, D., Field, J., 2019. Uptake of poly-and perfluoroalkyl substances at the air–water interface. Environmental Science & Technology 53, 12442-12448.
    Scher, D.P., Kelly, J.E., Huset, C.A., Barry, K.M., Hoffbeck, R.W., Yingling, V.L., Messing, R.B., 2018. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196, 548-555.
    Scherer, C., Weber, A., Stock, F., Vurusic, S., Egerci, H., Kochleus, C., Arendt, N., Foeldi, C., Dierkes, G., Wagner, M., Brennholt, N., Reifferscheid, G., 2020. Comparative assessment of microplastics in water and sediment of a large European river. Science of The Total Environment 738, 139866.
    Schildroth, S., Rodgers, K.M., Strynar, M., McCord, J., Poma, G., Covaci, A., Dodson, R.E., 2022. Per-and polyfluoroalkyl substances (PFAS) and persistent chemical mixtures in dust from U.S. colleges. Environmental Research 206, 112530.
    Schnitzer, M., 1983. Organic matter characterization. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties 9, 581-594.
    Schroeder, T., Bond, D., Foley, J., 2021. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environmental Science: Processes & Impacts 23, 291-301.
    Schwarz, A.E., Ligthart, T.N., Boukris, E., Van Harmelen, T., 2019. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Marine pollution bulletin 143, 92-100.
    Schymanski, D., Goldbeck, C., Humpf, H.-U., Fürst, P., 2018. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research 129, 154-162.
    Scotti, R., Bonanomi, G., Scelza, R., Zoina, A., Rao, M., 2015. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. Journal of soil science and plant nutrition 15, 333-352.
    Sekudewicz, I., Dąbrowska, A.M., Syczewski, M.D., 2021. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Science of the Total Environment 762, 143111.
    Shah, I., Adnan, R., Wan Ngah, W.S., Mohamed, N., 2015. Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies. PloS one 10, e0122603.
    Shahsavari, E., Rouch, D., Khudur, L.S., Thomas, D., Aburto-Medina, A., Ball, A.S., 2021. Challenges and current status of the biological treatment of PFAS-contaminated soils. Frontiers in Bioengineering and Biotechnology 8, 602040.
    Sharma, S., Sharma, V., Chatterjee, S., 2023. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review. Science of The Total Environment 875, 162627.
    Shoeib, M., Harner, T., M. Webster, G., Lee, S.C., 2011. Indoor sources of poly-and perfluorinated compounds (PFCS) in Vancouver, Canada: implications for human exposure. Environmental science & technology 45, 7999-8005.
    Simon, J.A., Abrams, S., Bradburne, T., Bryant, D., Burns, M., Cassidy, D., Cherry, J., Chiang, S.Y., Cox, D., Crimi, M., 2019. PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per‐and polyfluoroalkyl substances (PFAS) contamination issues. Remediation Journal 29, 31-48.
    Soltani, N., Keshavarzi, B., Moore, F., Busquets, R., Nematollahi, M.J., Javid, R., Gobert, S., 2022. Effect of land use on microplastic pollution in a major boundary waterway: The Arvand River. Science of The Total Environment 830, 154728.
    Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., Schaumann, G.E., 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the total environment 550, 690-705.
    Stumm, W., 1987. Aquatic surface chemistry: Chemical processes at the particle-water interface. John Wiley & Sons.
    Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., Shi, H., 2016. Microplastics in Taihu Lake, China. Environmental Pollution 216, 711-719.
    Sun, W., Huang, G.H., Zeng, G., Qin, X., Sun, X., 2009. A stepwise-cluster microbial biomass inference model in food waste composting. Waste management 29, 2956-2968.
    Sunderland, E.M., Hu, X.C., Dassuncao, C., Tokranov, A.K., Wagner, C.C., Allen, J.G., 2019. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of exposure science & environmental epidemiology 29, 131-147.
    Sznajder-Katarzyńska, K., Surma, M., Cieślik, I., 2019. A review of perfluoroalkyl acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination. Journal of Chemistry 2019.
    Talbot, R., Chang, H., 2022. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environmental Pollution 292, 118393.
    Talbot, R., Granek, E., Chang, H., Wood, R., Brander, S., 2022. Spatial and temporal variations of microplastic concentrations in Portland's freshwater ecosystems. Science of The Total Environment 833, 155143.
    Talreja, N., Hegde, C., Kumar, E.M., Chavali, M., 2025. Emerging Environmental Contaminants: Sources, Consequences and Future Challenges. Green Technologies for Industrial Contaminants, 119-149.
    Tang, L., Feng, J.-C., Li, C., Liang, J., Zhang, S., Yang, Z., 2023. Global occurrence, drivers, and environmental risks of microplastics in marine environments. Journal of Environmental Management 329, 116961.
    Ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D., Pusineri, C., Routaboul, C., Tenailleau, C., Duployer, B., Perez, E., 2016. Understanding the fragmentation pattern of marine plastic debris. Environmental science & technology 50, 5668-5675.
    Tian, Z., Kim, S.-K., Shoeib, M., Oh, J.-E., Park, J.-E., 2016. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway. Science of The Total Environment 553, 266-275.
    Tibbetts, J., Krause, S., Lynch, I., Sambrook Smith, G.H., 2018. Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water 10, 1597.
    Tittlemier, S.A., Pepper, K., Seymour, C., Moisey, J., Bronson, R., Cao, X.-L., Dabeka, R.W., 2007. Dietary Exposure of Canadians to Perfluorinated Carboxylates and Perfluorooctane Sulfonate via Consumption of Meat, Fish, Fast Foods, and Food Items Prepared in Their Packaging. Journal of Agricultural and Food Chemistry 55, 3203-3210.
    Tomlinson, D.L., Wilson, J.G., Harris, C., Jeffrey, D., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen 33, 566-575.
    Trudel, D., Horowitz, L., Wormuth, M., Scheringer, M., Cousins, I.T., Hungerbühler, K., 2008. Estimating consumer exposure to PFOS and PFOA. Risk Analysis: An International Journal 28, 251-269.
    TWHPA, 2019. Nutrition and Health Survey in Taiwan.
    UNEP, 2022. Decision SC-10/[--]: Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds. Conference of the parties to the Stockholm convention on persistent organic pollutants). United Nations Environment Programme UNEP Geneva, Switzerland.
    UNEP, D., 2019. SC-9/12. Listing of perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds. UNEP-POPS-COP. 9-SC-9-12, Conference of the Parties to the Stockholm….
    USEPA, 2016. Health Effects Support Document for Perfluorooctanoic Acid (PFOA).
    USPEA, 1992. Guidelines for Exposure Assessment.
    USPEA, 2011. Exposure Factors Handbook.
    USPEA, 2016. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS).
    USPEA, 2021. Draft Method 1633. Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS.
    Van Glubt, S., Brusseau, M.L., Yan, N., Huang, D., Khan, N., Carroll, K.C., 2021. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia. Environmental Pollution 268, 115917.
    Vierke, L., Berger, U., Cousins, I.T., 2013. Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environmental science & technology 47, 11032-11039.
    Waldschläger, K., Schüttrumpf, H., 2019. Erosion behavior of different microplastic particles in comparison to natural sediments. Environmental science & technology 53, 13219-13227.
    Waldschläger, K., Schüttrumpf, H., 2019. Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions. Environmental Science & Technology 53, 1958-1966.
    Wang, B., Lee, L.S., Wei, C., Fu, H., Zheng, S., Xu, Z., Zhu, D., 2016. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution. Environmental Pollution 216, 884-892.
    Wang, G., Lu, J., Tong, Y., Liu, Z., Zhou, H., Xiayihazi, N., 2020. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China. Science of the Total Environment 710, 136099.
    Wang, J., Guo, X., 2020. Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials 390, 122156.
    Wang, L., Huang, J., Chen, M., Jin, H., Wu, Y., Chen, X., 2024a. Investigation of microplastics in urban rivers of Eastern China in summer: abundance, characteristics and ecological risk assessment. Environmental Science: Processes & Impacts 26, 1245-1256.
    Wang, Q., Zhao, Z., Ruan, Y., Li, J., Sun, H., Zhang, G., 2018a. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. Science of The Total Environment 645, 596-602.
    Wang, T., Wu, J., Hu, T., Wang, C., Li, S., Li, Z., Chen, J., 2024b. Mechanistic insights into adsorption-desorption of PFOA on biochars: Effects of biomass feedstock and pyrolysis temperature, and implication of desorption hysteresis. Science of The Total Environment 957, 177668.
    Wang, W., Rhodes, G., Zhang, W., Yu, X., Teppen, B.J., Li, H., 2022. Implication of cation-bridging interaction contribution to sorption of perfluoroalkyl carboxylic acids by soils. Chemosphere 290, 133224.
    Wang, X., Huang, G., Zhao, S., Guo, J., 2015. An open-source software package for multivariate modeling and clustering: applications to air quality management. Environmental Science and Pollution Research 22, 14220-14233.
    Wang, Z., Su, B., Xu, X., Di, D., Huang, H., Mei, K., Dahlgren, R.A., Zhang, M., Shang, X., 2018b. Preferential accumulation of small (<300 μm) microplastics in the sediments of a coastal plain river network in eastern China. Water Research 144, 393-401.
    Weber, W.J., McGinley, P.M., Katz, L.E., 1991. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Research 25, 499-528.
    Wee, S.Y., Aris, A.Z., 2023. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. NPJ Clean Water 6, 57.
    Weschler, C.J., Nazaroff, W.W., 2010. SVOC partitioning between the gas phase and settled dust indoors. Atmospheric Environment 44, 3609-3620.
    Wiggin, K.J., Holland, E.B., 2019. Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California. Marine Pollution Bulletin 143, 152-162.
    Wright, S.L., Kelly, F.J., 2017. Plastic and human health: a micro issue? Environmental science & technology 51, 6634-6647.
    Wu, J., Wang, T., Li, S., Tang, W., Yu, S., Zhao, Z., Chen, J., 2024. A green method to improve adsorption capacity of hydrochar by ball-milling: enhanced norfloxacin adsorption performance and mechanistic insight. Carbon Research 3, 60.
    Wu, Y., Romanak, K., Bruton, T., Blum, A., Venier, M., 2020. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere 251, 126771.
    Xia, Y., Yang, T., Zhu, N., Li, D., Chen, Z., Lang, Q., Liu, Z., Jiao, W., 2019. Enhanced adsorption of Pb (II) onto modified hydrochar: Modeling and mechanism analysis. Bioresource Technology 288, 121593.
    Xiao, F., Jin, B., Golovko, S.A., Golovko, M.Y., Xing, B., 2019. Sorption and desorption mechanisms of cationic and zwitterionic per-and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis. Environmental Science & Technology 53, 11818-11827.
    Xing, B., 1997. The effect of the quality of soil organic matter on sorption of naphthalene. Chemosphere 35, 633-642.
    Xing, Y., Li, Q., Chen, X., Fu, X., Ji, L., Wang, J., Li, T., Zhang, Q., 2021. Different transport behaviors and mechanisms of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in saturated porous media. Journal of Hazardous Materials 402, 123435.
    Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., Wu, C., 2018. Sources and distribution of microplastics in China's largest inland lake – Qinghai Lake. Environmental Pollution 235, 899-906.
    Xu, C., Zhang, B., Gu, C., Shen, C., Yin, S., Aamir, M., Li, F., 2020. Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials 400, 123228.
    Xu, D., Gao, B., Wan, X., Peng, W., Zhang, B., 2022. Influence of catastrophic flood on microplastics organization in surface water of the Three Gorges Reservoir, China. Water Research 211, 118018.
    Xu, Z., Fiedler, S., Pfister, G., Henkelmann, B., Mosch, C., Völkel, W., Fromme, H., Schramm, K.-W., 2013. Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany. Science of The Total Environment 443, 485-490.
    Yin, Q., Ren, H., Wang, R., Zhao, Z., 2018. Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content. Science of the Total Environment 631, 895-903.
    Yu, X., Huang, W., Wang, Y., Wang, Y., Cao, L., Yang, Z., Dou, S., 2022. Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: An area of intensive mariculture. Water Research 212, 118117.
    Zhang, D., Zhang, W., Liang, Y., 2019. Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution-A review. Science of the Total Environment 694, 133606.
    Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science & Technology 51, 3794-3801.
    Zhao, B., Richardson, R.E., You, F., 2024. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. Journal of Hazardous Materials 477, 135329.
    Zheng, G., Boor, B.E., Schreder, E., Salamova, A., 2020. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment. Environmental Pollution 258, 113714.
    Zhu, Z., Wang, T., Wang, P., Lu, Y., Giesy, J.P., 2014. Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China. Marine pollution bulletin 85, 619-627.

    QR CODE