| 研究生: |
劉家銘 Liu, Chia-Ming |
|---|---|
| 論文名稱: |
疊紋干涉術應用於覆晶構裝之熱變形分析 Thermal Deformation Measurement of Flip-chip Packaging by Moiré Method . |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 疊紋干涉術 、覆晶構裝 |
| 外文關鍵詞: | Moiré, flip-chip |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
導致電子構裝體破壞最大的主因,是由於每一層材料間熱膨脹係數不同所引起的。由於此材料性質的不匹配,會使得構裝接合面產生較大的剪應力而產生破壞。所以本篇論文的主要目的就是發展一套實驗方法來驗證有限元素模型,並改善電子構裝元件的設計。
本篇論文首先先建立一套疊紋干涉系統來偵測覆晶構裝體由溫度所產生的熱變型。在實驗的過程中,覆晶構裝體將會被給予一熱負載,接下來使用全場的疊紋干涉法來偵測覆晶構裝體切面所產生的熱變型,而熱變形將會使得覆晶構裝體產生干涉條紋。藉由此干涉條紋,即可計算其變型。另一方面,使用ANSYS®軟體,根據疊紋干涉法所量測的試件建立一個條件相同的二維有限元素模型,來計算試件的變形,並且與疊紋干涉法的結果作比較。觀察有限元素法的計算及實驗的比較,發現變形的量以及趨勢都相當接近,由此可證明有限元素的模型是正確的,接下來就可以根據這個有限元素模型分析它的應力及應變狀態,並對此模型作參數討論,尋找出較佳的設計方式。而從參數中的討論可發現,材料熱膨脹係數及楊氏係數的改變,對試件的應力及應變造成很大的影響。
Abstract
The main cause led to failure of packages is the difference of the coefficient of thermal expansion (CTE) between materials. The mismatch among every layers of packaging will cause notably shear stresses in their interconnections. The aim of the study is to develop the experimental method and the finite element model to improve the package design.
In this study, the moiré interferometry technology is built to detect the thermal deformation of flip-chip package. In the process of experiment, the flip-chip package is given a thermal load, and a whole field optical moiré interferometry is applied to detect the thermal deformation within the packages cut plane. The fringe patterns of the thermal-mechanical deformation are presented, and the deformation of the sample can be calculated by the fringe patterns.
On the other hand, a two-dimensional finite element model of flip-chip packaging according to moiré interferometry experiment is built by using the commercial software ANSYS®. Comparing the calculations of finite element method with the results of moiré interferometry experiment, it can be found that the deformation calculated by finite element method is very close to those of the moiré method. The finite element model proposed in the study is available.
Based on the finite element model, the influences of parameters, such as material properties and geometry, on thermal deformations of package are discussed. Numerical results are shown that the thermal expansion coefficient and Young’s modulus have significant effects on thermal deformations.
參考文獻
[1] Lord Rayleigh, “On the ,anufacture and theory of diffraction grating”, Phil. Mag. Series4, pp. 81-93, 1874
[2] J. Guild, The Interference System of Crossed Diffraction Gratings: Theory of Moirè Fringes, Oxford at the Clarendon Press, 1956
[3] F. M Gerasimov, V. P. Sergeev, I. A. Teltevskii, V. V. Sergeev, B. V. Marichev, “The use of Moirè interference fringes to control the ruling of diffraction gratings.” Opt. Sepectrosc. 19, pp. 152-156, 1965
[4] N. Wadsorth, M. Marchant, B. Billing, “Real-time observation of in-plane displacements of opaque surface” Opt. Laser Technol. 5, pp. 119-123, 1973
[5] R. Czarnet, “New methods in Moirè interferometry”, PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA,1984
[6] M. L. Baschore and D. Post, “High-Frequency, High-Reflectance Transferable Moirè Gratings”, Exp. Tech., Vol. 8, No. 5, pp. 29-31,1984
[7] J. D. Wood, M. Y. Tsai, D. Post, J. Morton, V. J. Parks and F. P. Gerstle, Jr., “Thermal Strains in a Bimaaterial Joint: An Experimental and Numerical Analysis” Proc. 1989 SEM Spring Conference on Experimental Mechanics, pp. 543-551, Society for Experimental Mechanics, Bethel, Connecticut, 1989
[8] D. Post and J.D. Wood, “Determination of Thermal Strain by Moirè Interferometry”, Experimental Mechanics, pp. 318-322, Sep. 1989
[9] A. F. Bastawros, A. S. Voloshin, and P. Rodogoveski, “Experimental Validation of fractioal fringe Moirè Interferometry”, Proc. 1989 Society of Experimental Mechanics Spring Conf., Cambridge, MA, May 28-June 1, pp. 406-410,1989
[10] A.F. Bastawros, A. S, Voloshin, “Mixed Mode stress Intensity Factors by Fractional Fringe Moirè Interferometry”, Proc. 1990 Society of Experimental Mechanics Spring Conf., Albuquerque, NM, June 3-9, pp.69-75, 1990
[11] H. C. Choi, Y. Guo, W. LaFontaine, and C. K. Lim, “Solder Ball Connect (SBC) Assemblies Under Thermal Loading: Ⅱ. Strain Analysis via Image Processing, and Reliability Considerations” IBM J. Res. Develop. 37, No. 5,pp.649-659, 1993
[12] T. Y. Wu, Y. Guo, and T. Chen, “Thermal-mechanical strain characterization for printed wiring boards”, IBM Journal of Research and Development, Vol. 37, No. 5, pp. 621-634,1993
[13] Y. Guo, et al., “Solder Ball Connect (SBC) Assemblies Under Thermal Loading: Ⅰ. Deformation Measurement via Moirè Interferometry, and its Interpretation”, IBM Journal of Research and Development, Vol. 37, No. 5, pp. 635-648,1993
[14] Bongtae Han and Yifan Guo, “Thermal Deformation Analysis of Various Elactronic Packaging Products by Moirè Interferometry”, ASME journal of Electronic Packaging, Vol. 118,pp.55-61, Jun. 1996
[15] B. Han, Y. Guo, “Determination of an Effective Coefficient of Thermal Expansion of Electronic Packaging Components: A Whole-Field Approach”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 19, No. 2, pp. 240-247, 1996
[16] J. Zhu, D. Zou, S. Liu, “real-Time Monitoring and Simulation of Thermal Deformation in Plastic Package”, ASME Journal of Electronic Packaging, Vol. 120, pp. 160-165, jun.1998
[17] J. D. R. Valera, P. G. Sinha, T. Yoshino, O. J. Lokberg, “Large amplitude point-vibration measurement with optical-fiber moiré-based tecnnique”, Optic and Laser in Engineering 31(1999), pp. 183-189.
[18] Mikel R. Miller, Xiang Dai, Guotao Wang and Paul S. Ho, “Study of Thermal Deformation in High-Density Eletric Packages Using High Resolution Moiré Interferometry”, Technical Symposium ChipMOS (2001) 231-236.
[19] J. Wang, Z. Qian, and S. Liu, “Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Modeling Technique”, Transactions on ASME J. of Electronic Packaging, Vol.120, September 1998, pp. 309-313
[20] M. Mukai, T. Kawakami, T. Endo, Y. Hiruta and K. Takahashi, “Elastic-Creep Thermal Stress Analyses for the SMT-PGA Package’s Solder Joint”, Mechanics and Material for Electronic Packaging: Volume 2-Thermal and Mechanical Behavior and Modeling, pp.197-203, 1994
[21] C.P. Yeh, W. X. Zhou and K. Wyatt, “Parametric Finite Element Analysis of Flip Chip Reliability”, The International Society for Hybrid Microelectronics, Vol.19, No.2, pp.120-127, Second Quarter 1996
[22] Q. Yao and J. Qu, “Three-Dimention Versus Two-Dimention Final Element Modeling of Flip-Chip Packages”, Transactions on ASME J. of Electronic Packaging, Vol.121, pp.196-201, September 1999
[23] C. A. Le Gall, J. Qu and D. L. McDowell ,“Some Mechanics Issues Related to the Thermomechanical Reliability of Flip Chip DCA with Underfill Encapsulation”, Application of Fracture Mechanics in Electronic packaging, EEP-Vol.20, pp.85-95, 1997
[24] S. Michaelides and S. Sitaraman, “Role of Underfilling Imperfections on Flip-chip Reliability”, Advances in Electronic Packaging, EEP-Vol.19-2, pp.1487-1493, 1997
[25] H. Doi, K. Kawano and A. Yasukawa, “Reliability of Underfill-Encapsulate Flip-Chip Packages”, Application of Fracture Mechanics in Electronic packaging, EEP-Vol.20, pp.7-14 , 1997
[26] K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 1-Without Underfill”, Transactions on ASME J. of Electronic Packaging, Vol.121, pp.231-236, December 1999
[27] K. Darbha, J. H. Okura, S. Shetty and A. Dasgupta, “Thermomechanical Durability Analysis of Flip Chip Solder Interconnects : Part 2-With Underfill” Transactions on ASME J. of Electronic Packaging, Vol.121, pp.237-241, December 1999
[28] Gordon J. Van Wylen and Richard E. Sonntag, “Fundamentals of Classiacl Thermodynamics”
[29] John Lau, C.P. Wong, John L. Prince, Wataru Nakayama, “Electronic Packaging Design, Materials, Process, and Reliability”
[30] J. Wang, Z. qian, S. Liu, “Process Induced Stress of a Flip-Chip Packaging by Sequential Processing Modeling Technique”, Journal of Electronic Packaging, Vol. 120, pp. 309-313, September 1998
[33] Balwant S., “Performance Comparison of BGA and Flex-CSP Using Parameteric FEA Models”, Fifteenth IEEE SEMI-THERMTM Symposium, pp.119-124, 1999