| 研究生: |
伍蕙萱 Wu, Hui-Hsuan |
|---|---|
| 論文名稱: |
x^2+ny^2型式之質數 Primes of the Form x^2+ny^2 |
| 指導教授: |
黃柏嶧
Huang, Po-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | Legendre symbol 、Jacobi symbol 、二次剩餘 、乘法群 、類群 |
| 外文關鍵詞: | Legendre symbol, Jacobi symbol, quadratic residue, multiplication group, class field |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們將Fermat, Euler, Lagrange, Legendre 和 Gauss等前輩數學家的構想和演算法,寫程式算過一遍,更具體地理解類群和 genus 理論如何運作。文中我們列舉一些例子,解釋一個質數p在什麼條件下能寫成x^2+ny^2的型式。
Based on Fermat, Euler, Lagrange, Legendre and Gauss' ideas, we compute several cases by c++ to comprehend how class group and genus theory work. We focus on quadratic forms and genus theory. We introduce how these intelligent mathematicians discover the properties of particular primes. We explain when could a prime p be transform to x^2+ny^2 and how it be done.
[1] C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
[2] David A. Cox, Primes of the Form x
2+ny2
, Fermat, Class Field Theory, and Complex Multiplication,
Amherst Massachusetts, 1989.
[3] G. Frei, On the development of genus of quadratic forms, Ann. Sc. Math. Quebec 3 (1979).
[4] Joseph H. Silverman, A Friendly Introduction to Number Theory, Providence, Rhode Island, 1997.
[5] M. J. Collinson, The origins of the cubic and biquadratic reciprocity laws, Arch. Hist. Exact Sci. 17
(1977).
校內:立即公開