| 研究生: |
魏嘉宏 Wei, Jia-Hong |
|---|---|
| 論文名稱: |
具加熱段水平渠道內流場與共軛熱傳之數值模擬 Numerical Simulation of Fluid Flow and Conjugate Heat Transfer for in a Horizontal Channel with a Heat Section |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 共軛熱傳 、紊流 、數值計算 |
| 外文關鍵詞: | Conjugate heat transfer, Turbulent flow, Numerical calculation |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是針對具加熱段水平渠道之共軛熱傳做詳細的數值研究。本文紊流統御方程式乃是以控制體積法為基礎,乃是以控制體積為基礎,配合有限差分法及冪次法則來離散成差分方程式。對於紊流的結構則是以 紊流模式配合牆函數來描述。並以SIMPLE運算法則求解壓力-速度結合的問題。
本文研究的參數為層流與紊流雷諾數(Re=9.8~500、 Re=3000~10000)、加熱段溫度(800K、900K、1000K)或等熱通量( =12.7 、38.1 、63.5 ),加熱段長度(0.1651m、0.2032m、0.3048m)。
在數值研究方面,氣體流場的溫度分佈和熱傳現象與Chiu et al.(2001)的實驗結果顯示相當吻合。共軛熱傳對於通道內加熱段表面、渠道壁面以及氣相的溫度分佈與均勻性有顯著的影響,因此影響了熱傳率。本文數值預測可以提供對於共軛熱傳效應之物理特性與數值共軛熱傳模式的適用性。
The detailed numerical study is carried out to investigate conjugate heat transfer in horizontal channels with a heated section. The turbulent-governing equations are solved by a Control-Volume base on finite-difference method with power-law scheme, and the well-known turbulence model and its associate wall function to describe the turbulent structure. The SIMPLE algorithm is adopted to solve the pressure-velocity coupling.
The parameters studied include laminar and turbulent Reynolds number (Re=9.5~500, Re=3000~10000), temperature of heated section
( =800K, 900K, and 1000K) or constant heat flux ( =12.7 , 38.1 , 63.5 ), length of heated section ( =0.1651m, 0.2032m, 0.3048m).
In the numerical study, the gas flow field temperature distribution and heat transfer are examined with the experimental results of Chiu et al. (2001) and show good agreement. Conjugate heat transfer is demonstrated to significantly affect the temperature distribution and uniformity at the heated section’s surface, channel wall and the gas phase, thus impacting the rate of heat transfer. Numerical prediction obtained from this study will provide physical insight into conjugate heat transfer effects and facilitates validation of numerical conjugate heat transfer models.
Campbell, S. A., The Science and Engineering of Microelectronic Fabrication, Oxford University Press, ISBN:0-19-510508-7, 1966.
Chae, Y.K., Y.Egashira, Y.Shimogaki, K.Sugawara ,and H.Komiyama” Chemical Vapor Deposition Reactor Design Using Small-scale Diagnostic Experiment Combined with Computational Fluid Dynamics Simulations. “Journal of The Electrochemical Society ,146(5), pp .1780-1788, 1999.
Chiu.,K.S.Wilson, Yogesh jaluria, and Cristy J. Richards , ”Experimental and Numercial Study of Conjugate Heat Transfer in a Horizontal Channel Heated From Below” Journal of ASME Heat Transfer, Vol. 123, pp. 688-697, 2001.
Chiu, W. K. S., Glumac, N. G., and Jaluria, Y., ‘‘Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations,’’ Numer. Heat Transfer, Part A, 37 , pp. 113-132, 2000.
Durst, L., Kadinski ”Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver.”,F. J. Crystal. Growth125, pp. 612-626, 1992.
Durst, F., Kadinski, L., and Scha¨fer, M., ‘‘A Multigrid Solver for Fluid Flow and Mass Transfer Coupled with Grey-Body Surface Radiation for the Numerical Simulation of Chemical Vapor Deposition Processes,’’ J. Cryst. Growth, 146, pp. 202-208, 1995.
Erick O. Einset, Klavs F. Jensen and Chris R. Kleijn, "On the origin of return flows in horizontal chemical vapor deposition reactors, ” Journal of Crystal Growth, Vol. 132, pp. 483-490, 1993.
Fedorov, A. G., and Viskanta, R., ‘‘Three-Dimensioanl Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging,’’ Int. J. Heat Mass Transf., 43, pp. 399-415, 2000.
Fotiadis, D. I. S. Kieda, K. F. Jensen, “Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy ” , J. Crystal Growth, Vol.102, pp. 441-470, 1990.
Hoseon Yoo and Yogesh jaluria “Thermak Aspects in the Continuous Chemical Vapor Deposition of Silicon” Journal of ASME Heat Transfer, Vol. 124, pp. 938-946, 2002.
Mountziaris, T. J.,”A Reaction-Transport Model of GaAsGrowth by Metalorganic Chemical Vapor Deposition UsingTrimethyl-Gallium and Tertiary-Butyl-Arsine,” Journal of Crystal. Growth, Vol. 131, pp. 179, 1993.
Nami, Ziba, ”Semi-emp/rical and Nuierical Modeling of Metal-organic Chemical Vapor Deposition (Titaniumdioxide Epitaxial Growth), ” Georgia Institute of Technology(0078),PHD Dissertation, 1996.
Panton, R. L., Incompressible Flow, John Wiley & Sons, Inc., NY. , 1984.
Park, K. W., pak, H. Y.,”Characteristics of Three-Dimensional Flow Heat and Mass Transfer in a Chemical Vapor Deposition Reactor,”J.Numerical Heat Transfer PartA, 37, pp.407-423, 2000.
Peskin, A. P., G.R. Hardin, “Gallium arsenide growth in a pancakeMOCVD reactor”, Journalof Crystal Growth Vol.186, pp 494-510, 1998.
Sugavanam, R. A., Ortega, A., and Choi, C. Y., ‘‘A Numerical Investigation of Conjugate Heat Transfer from a Flush Heat-Source on a Conductive Board in Laminar Channel Flow,’’ Int. J. Heat Mass Transf., 38, pp. 2969–2984, 1995.
Yu.N.Makarov and A.I.Zhmakin,“On the Flow Regimes in VPE Reactors”, J. Crystal Growth,Vol.94, pp.537-550, 1989.
莊達人,”VLSI製造技術”,高立圖書有限公司,台北,1998。