簡易檢索 / 詳目顯示

研究生: 翁文寅
Weng, Wen-Yin
論文名稱: 使用Photo CVD成長氧化矽於商用型結晶矽太陽能電池之研究
The Study of Photo-CVD Silicon Oxide on Commercialized Crystalline Silicon Solar Cells
指導教授: 張守進
Chang, Shoou-Jinn
蔡進耀
Tsai, Chin-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 75
中文關鍵詞: 結晶矽太陽能電池光激化學氣相沉積氧化矽商用型矽太陽能電池
外文關鍵詞: Photo-CVD, Silicon oxide, Crystalline silicon solar cell, Commercialized silicon solar cell
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用以氘燈作為激發光源的光激化學氣相沉積系統低溫(<300oC)成長氧化矽,同時作為結晶矽太陽能電池的護佈(passivation)與抗反射層(Antireflection coating)‧
    氘燈輻射波長為190到400nm的紫外光,紫外光能有效的激發O2與SiH4 進行化學反應進而在低溫的條件下沉積氧化矽於矽基板上‧在這個實驗中,我們固定製程壓力在300 mTorr,改變製程氣體比例(定義R=O2/SiH4)分別為0.5,1,2,同時也改變製程溫度分別為100oC,200oC,300oC‧使用以上九個製程條件去沉積氧化矽薄膜‧這些氧化矽薄膜的特性將被橢圓儀、原子力顯微鏡、傅立葉轉換紅外線光譜儀、二次離子質譜儀..等儀器分析,同時也使用電容-電壓量測去計算界面狀態密度進而分析界面的品質‧我們也使用上述的製程條件分別成長10,20,30 nm的氧化矽薄膜應用在結晶矽太陽能電池上‧最後,我們量測太陽能電池的加權反射率,開路電壓,短路電壓,填充因子與轉換效率,同時也討論太陽能電池特性與薄膜分析間的關係‧
    在我們的實驗中,最好的成長條件是R=2,T=300oC‧最低的界面狀態密度是5.37×1011 (eV-1cm-2),同時也將得到較大的短路電流密度‧

    In this thesis, the silicon oxide was deposited on crystalline silicon solar cells as a passivation layer as well as an antireflection coating by Photo-CVD using a Deuterium lamp as the excitation source at a lower temperature (<300oC)
    Deuterium lamp radiates the light wavelength form 190 to 400nm which is in ultraviolet region. It can effectively excite O2 and SiH4 reacting to grow silicon oxide on the substrate at a lower temperature. In our experiment, the pressure of chamber was fixed at 300 mTorr, and the process gas ratio (R=O2/SiH4) was changed to 0.5, 1, 2, respectively. At the same time, the process temperature also was changed from 100oC, 200oC to 300oC. For all recipes, the silicon oxide films were deposited on polished silicon substrate. The characteristics of SiO2 films will be investigated by analysis of Ellipsometer, Atomic Force Microscope (AFM), Fourier Transform Infrared Spectrometer (FTIR), Secondary ion Mass Spectrometry (SIMS), Focused Ion Beam (FIB). Capacitance-Voltage (C-V) measurement was used to calculate the interface state density and analyze the interfacial quality. For all process recipes, the silicon oxide was deposited on crystalline silicon solar cell with thicknesses of 10, 20, 30 nm, respectively. Finally, the weight average reflection, open-circuit voltage, short-circuit current density, fill factor and efficiency of solar cells were measured. We also discuss the relation with thin films and devices analysis.
    The best performance is at R=2, T=300oC. The lowest value of interface state density is 5.37×1011 (eV-1cm-2). The short-circuit current density is more compared with standard in our experiment.

    中文摘要..................................................I Abstract................................................III Acknowledgement...........................................V Contents................................................VII Figure Captions...........................................X Table Captions..........................................XII Chapter 1 Introduction 1.1 Development of Solar Energy...........................1 1.2 The Photo-CVD silicon dioxide (SiO2)..................2 1.3 Thesis Outline........................................3 Chapter 2 Background and Theorem 2.1 Photo-CVD.............................................5 2.1.1 Introduction to Photo-CVD system....................5 2.1.2 Direct Photo-CVD....................................5 2.1.3 The Growth of Silicon Oxide Layer by Photo-CVD......7 2.2 Solar Cell............................................8 2.2.1 Structure and Process of Solar Cell.................8 2.2.2 The Mechanism of Solar Cell.........................9 2.2.3 Equivalent Circuit Model and Efficiency............10 2.3 AR-coating and Passivation of SiNx/SiO2 Double Layer.10 2.3.1 Anti-reflection coating layer......................10 2.3.2 Surface passivation................................11 2.4 Efficiency loss mechanism............................11 2.4.1 Short-circuit Current Loss.........................11 2.4.2 Open-circuit Voltage Loss..........................12 2.4.3 Fill Factor Loss...................................14 Chapter 3 Experiments and Measurement 3.1 Photo-CVD Silicon Oxide Thin Film Deposition.........21 3.1.1 Sample Preparation.................................21 3.1.2 Process and Recipe.................................22 3.2 Photo-CVD Silicon Oxide Thin Film Analysis...........22 3.2.1 Ellipsometer.......................................23 3.2.2 Atomic Force Microscope (AFM)......................23 3.2.3 Fourier Transform Infrared Spectroscopy (FTIR).....24 3.2.4 Secondary Ion Mass Spectroscopy (SIMS).............24 3.2.5 Focused Ion Beam (FIB).............................25 3.2.6 Capacitance-Voltage (C-V) Measurement..............26 3.3 Fabrication and Testing of Solar Cell................27 3.3.1 Etching and Texturing..............................27 3.3.2 P-N Junction Formation.............................28 3.3.3 Depositing of Photo-CVD SiO2 and PECVD SiNx........28 3.3.4 Weighted Average Reflection (WAR) Measurement......28 3.3.5 Screen Printing....................................30 3.3.6 Performance Testing................................30 Chapter 4 Results and Discussions 4.1 Growth Rate of Photo-CVD Silicon Oxide...............38 4.1.1 The Chamber Pressure...............................38 4.1.2 Gas Ratio and Substrate Temperature................38 4.2 Photo-CVD Silicon Oxide Thin Film Analysis...........39 4.2.1 Ellipsometer Analysis..............................39 4.2.2 Atomic Force Microscope (AFM) Analysis.............40 4.2.3 Fourier Transform Infrared Spectroscopy (FTIR) Analysis..........................................40 4.2.4 Secondary Ion Mass Spectroscopy (SIMS) Analysis....41 4.2.5 Focused Ion Beam (FIB) Analysis....................41 4.2.6 Capacitance-Voltage (C-V) Measurement Analysis.....42 4.3 Solar Cell Device Analysis...........................43 4.3.1 Weighted Average Reflection (WAR) Measurement......43 4.3.2 Results of Voc, Jsc, FF and Efficiency.............44 4.3.3 The discussion of Voc and Dit......................45 4.3.4 The discussion of Jsc and WAR......................46 Chapter 5 Conclusion and Future Work 5.1 Conclusion...........................................71 5.2 Future Work..........................................72 Reference................................................73

    [1] V. K. Kapur, R. D. McConnell, D. Carlson, G. P. Ceasar, A. Rohatgi" Photovoltaics For The 21st Century" Published by The Electrochemical Society, Inc. Pennington, New Jersey, USA 1999.
    [2] Greg P. Smestad, Optoelectronics of Solar Cells, SPIE PRESS, 2002.
    [3] Arnulf Jager-Waldau" Renewable and Sustainable Energy Reviews " 11 (2007) 1414–1437.
    [4] 魏慕慈, 以射頻磁控濺鍍法低溫備製高介電係數鈦酸鍶鋇薄膜應用於動態隨機存取記憶體電容器之研究, 成功大學電機工程研究所碩士論文, 2001.
    [5] Jan Schmidt, Mark Kerr, Andres Cuevas, Surface passivation of silicon solar cells using plasma-enhanced CVD SiN films and thin thermal SiO2/plasma SiN stacks, Semiconductor Science and Technology, 16, 2001.
    [6] Shreesh Narasimha, Ajeet Rohatgi, A. W. Weeber, An Optimized Rapid Aluminum Back Surface Field Technique for Silicon Solar Cell, IEEE Transactions on Electron Devices, 46, 7,1999.
    [7] M. Spiegel, P. Fath, K. Peter, B. Buck, G. Willeke and E. Bucher, “Detailed study on microwave induced remote hydrogen plasma passivation of multi-crystalline silicon”, Proceedings of the 13th EC Photovoltaic Solar Energy Conference, Nice, France, 1995, p. 421-424.
    [8] S.M.Sze ”SEMECONDUCTOR DEVICE Physics and Technology“ in Chapter 2.
    [9] S.M.Sze”SEMECONDUCTOR DEVICE Physics and Technology“p315~p318
    [10] Jenny Nelson, The Physics of Solar Cells, Imperial College Press, 2003.
    [11] Y.C. Fang, S.J. Chang, C.Y. Tsai ”The study of low temperature oxidation on the commercial crystalline silicon solar cell“ IEOSE, NCKU, Tainan, Taiwan. Thesis for Master of Science.
    [12] 莊嘉琛, 太陽能工程-太陽電池篇, 全華, 1997
    [13] B. Bitnar, R. Glatthaar, C. Marckmann, M. Spiegel, R. Tölle, P. Fath, G. Willeke and E. Bucher, “Lifetime investigations on screenprinted silicon solar cells”, Proceedings of the2nd WCPEC, Vienna, Austria, 1998.
    [14] Suresh Kumar Dhungel, Jinsu Yoo, Kyunghae Kim, Bojan Karunagaran, Hwang Sunwoo, Devanesan Mangalaraj and Junsin Yi "Effect of pressure on surface passivation of silicon solar cell by forming gas annealing" Materials Science in Semiconductor Processing, Volume 7, Issues 4-6, 2004, Pages 427-431
    [15] Martin A. Green “SOLAR CELLS” pp. 138–145.
    [16] Martin A. Green “SOLAR CELLS” Chapter 3.,p.40~59
    [17] Martin A. Green “SOLAR CELLS” Chapter 4.,p.62~80
    [18] C.T. SAH et al., “Carrier Generation and Recombination in p-n Junctions….,” Proceedings of the IRE 45(1957), 1228-1243
    [19] Martin A. Green “SOLAR CELLS” p.95
    [20] S.M.Sze“SEMECONDUCTOR DEVICE Physics and Technology“ p.112
    [21] Martin A. Green “SOLAR CELLS” p.70~80
    [22] M.A.Green. Solid-State Electronics 20(1997) 265-266
    [23] R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, 1989
    [24] L. Cai, A. Rohatgi, D. Yang, “M. A. El-Sayed, Effect of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films”, J. Appl. Phys. 80,9,1996
    [25] 陳松延, 以In-line PECVD快速沉積SiNx:H抗反射層於商業型結晶矽太陽能電池之研究, 成功大學光電科學與工程研究所, 碩士論文, 2004
    [26] 張偉智, 以液相沉積法成長二氧化矽及其在MIS太陽能電池上之應用, 成功大學電機工程研究所, 碩士論文, 1997
    [27] Dieter K. Schroder, Semiconductor Material and Device Characterization,John Wiley, 1998
    [28] Z. Chen, K Yasutake, A. Rohatgi, Record low SiO2/Si interface state density for low temperature oxide prepared by direct PECVD, Appl. Phys. Leet. 63,15,1993
    [29] Ajeet Rohatgi, Shreesh Narasimha, Abasifreke U. Ebong, Parag Doshi, Understanding and Implementation of Rapid Thermal Technologies for High Efficiency Silicon Solar Cell, IEEE Transactions on Electron Devices, 40, 10, 1999
    [30] W. A. Hill, C. C. Coleman, A Single-frequency Approximation for Interface State Density Determination, Solid-State Election. 23,1980
    [31] E. H. Nicollian, A Goetzberger, The Si-SiO2 Interface Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique, Bell Syst. Tech. J. 46, 1967
    [32] B. Gruska, S. Peters, Fast and Reliable Thickness and Refractive Index Measurement of Anti-reflection Coating on Solar Silicon by Ellipsometry, Sentech Instruments GmbH
    [33] Antonio Luque, Solar Cells and Optics for Photovoltaic Concentration, Adam Hilger, Bristol and Philadelphia, 1989
    [34] C. Ballif, D. M. Huljic, G. Willeke, A. Hessler-Wyser, Silver thick-film contacts on highly doped n-type silicon emitters: Structural and electronic properties of the interface, Appl. Phys. Lett. 82, 12, 2003

    無法下載圖示 校內:2028-07-08公開
    校外:2028-07-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE