簡易檢索 / 詳目顯示

研究生: 吳京霖
Wu, Ching-lin
論文名稱: 嵌入奈米氧化鋅粒子的中孔洞二氧化矽之合成與性質分析
Investigation of Synthesis and Characterization of Nano Zinc Oxide Particles Incorporated in the Mesoporous Silica
指導教授: 黃肇瑞
Huang, Jow-lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 中孔洞氧化鋅螢光
外文關鍵詞: ZnO, mesoporous, photoluminescence
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米氧化鋅粒子因其具有與塊材迥異的光電性質,所以成為奈米材料領域中引人注目的研究之ㄧ。然而,由於奈米材料的低穩定性,導致奈米氧化鋅在應用方面受到極大的限制。本研究著重於奈米複合材料的製備,合成奈米氧化鋅粒子使其分散於穩定之基質中,並分析其性質。
    本實驗使用非離子型界面活性劑 (nonionic surfactant) 在水中形成有機模板,並以四乙氧基矽烷作為氧化矽前驅物的來源,控制四乙氧基矽烷的濃度,合成具有有序奈米孔洞 (直徑約1 - 6 nm) 的中孔洞二氧化矽。接著利用所形成的中孔洞二氧化矽作為合成奈米氧化鋅的模板,利用乙丙酮鋅作為氧化鋅前驅物,於水溶液中經過分解、過濾、氧化後,於中孔洞二氧化矽中形成奈米氧化鋅粒子。本研究藉由XRD、TEM、SEM、PL等儀器進行微結構與螢光性質的分析
    實驗結果顯示:由於中孔洞二氧化矽的孔洞限制氧化鋅粒子的成長,因此所合成的氧化鋅與中孔洞二氧化矽奈米複合材料在螢光性質上和塊材氧化鋅不同,在激發光2.0電子伏特時,氧化鋅的特徵光因為量子尺寸效應而藍移到3.5電子伏特處。

    Zinc oxide nanopaticles have attracted great attention because of the specific optical and electronic properties, which differ significantly from the bulk ZnO. However, the use of the ZnO nanostructures as materials is strongly restricted because of their low stability. The approach to this problem is the preparation of the so-called nanocomposite materials, namely incorporatiing ZnO nanoparticles inside a stabilizing matrix.
    In this research, nonionic surfactant was used as liquid organic template and tetraethoxysilane as silica precursor to synthesis mesoporous silica with ordered arrangement nanopores (diameters are about 1 – 6 nm). The synthesized mesoporous silica could be the template to synthesize ZnO nanoparticles. We used zinc acetylacetonate to be the ZnO precursor. After reacted, filtered and oxidized, the ZnO incorporated in the mesoporous silica nanocomposite materials were formed. The results were characterized by X-ray diffraction, TEM, SEM and Photo luminescent spectrum.

    總目錄 中文摘要 II Abstract III 誌謝 IV 總目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究目的與方向 5 第二章 理論基礎 6 2-1 中孔洞材料簡介 6 2-1-1 中孔洞材料主要研究範疇 8 2-1-2 中孔洞材料之應用 10 2-2 界面活性劑 13 2-2-1 界面活性劑的分類 13 2-2-2 微胞的形成 14 2-2-3 界面活性劑聚集體的結構 16 2-2-4 影響界面活性劑聚集體的因素 16 2-3 矽酸鹽的化學概念 17 2-4 氧化鋅發光機制 19 第三章 實驗方法與步驟 25 3-1 實驗藥品 25 3-2 實驗步驟 25 3-2-1 中孔洞氧化矽製備 25 3-2-2 於中孔洞氧化矽中合成ZnO奈米粒子 26 3-3 儀器鑑定分析 30 3-3-1 X-射線粉末繞射光譜儀 (XRD) 30 3-3-2 穿透式電子顯微鏡 (TEM) 30 3-3-3 掃描式電子顯微鏡(SEM) 31 3-3-4 氮氣等溫吸附/脫附量測 (N2 adsorption/desorption isotherm) 31 3-3-5 紫外光-可見光光譜儀 (UV-Vis spectrum) 35 3-3-6 螢光光譜儀 (Photo luminescent spectrum) 35 第四章 結果與討論 37 4-1 氧化矽源濃度對中孔洞氧化矽之性質影響 37 4-1-1 表面形態分析 37 4-1-2 微結構分析 42 4-1-3 中孔洞二氧化矽的發光性質 50 4-2 於中孔洞氧化矽中成長奈米氧化鋅粒子之研究 54 4-2-1 微結構分析 54 4-2-2 螢光光譜與吸收光譜分析 67 第五章 結論 72 參考文獻 73 圖目錄 Fig. 1-1 The scheme of the M41S. a) MCM-41. b) MCM-48. c) MCM-50 4 Fig. 2-1 The formation route of the mesoporous molecular sieves, M41S.[14] 7 Fig. 2-2 Categories of mesoporous sieve researches 9 Fig. 2-3 The schematic of colloidal phase separation mechanism 19. 錯誤! 尚未定義書籤。 Fig. 2-3 The mechanism of micelle’s morphology. 11 Fig. 2-4 The zinc oxide band structure and exciton energy state. Eg:the energy between condution band and valence band. Ex:exciton binding energy. 22 Fig. 2-5 The Bixia Lin’s mechanism of zinc oxide vacancy energy state caculated by full-potential linear muffin-tin orbital method. 23 Fig. 2-6 K. Vanheusden’s mechanism of zinc oxide vacancy energy state. (a) In the low free carrier concentration. (b) In the high free carrier concentration. 24 Fig. 3-1 Experimental procedure of synthesizing mesoporous silica. 28 Fig. 3-2 Experimental procedure of synthesizing ZnO/mesoporous silica. 29 Fig. 3-3 (a) Types of physisorption; (b)Types of hysteresis loop 36 Fig. 4-1 The SEM micrographS of mesoporous silica at various TEOS concentration. (a) S1 (b) S2 (c) S3 (d) S4 (e) S5 (f) the magnified micrograph of S2. 40 Fig. 4-2 The small angle XRD spectrum of the mesoporous silica. (a) MS1 (b) MS2 (c) MS3 (d) MS4 (e) MS5 43 Fig. 4-3 The TEM image of the mesoporous silica. (a) MS1 (b) MS2 (c) MS3 (d) MS4 (e) MS5 47 Fig. 4-4 (a) The Nitrogen adsorption/desorption isotherm curve and (b) pore size distribution of the sample MS2 and MS5. 49 Fig 4-5 Photonluminescent spectrum (λ = 200 nm) of the mesoporous silica MS2 with its Gaussian decomposition. 51 Fig. 4-6 XRD patterns of the sample MS2-ZnO-0.005, MS2-ZnO-0.01 and MS2-ZnO-0.03. 57 Fig 4-8 TEM micrographs and EDS analysis of the sample MS2-ZnO-0.005 60 Fig 4-9 TEM micrographs and EDS analysis of the sample MS2-ZnO-0.01 61 Fig 4-10 TEM micrographs and EDS analysis of the sample MS2-ZnO-0.03 63 Fig 4-11 (a) Nitrogen adsorption/desorption isotherm curve and (b) the pore size distribution of the sample MS2, MS2-ZnO-0.005 and MS2-ZnO-0.01 64 Fig. 4-11 Photoluminescence spectra (λ = 200 nm) of the ZnO/mesoporous silica nanocomposite sample (a) MS2-ZnO-0.005 and (b) MS2-ZnO-0.01 68 Fig. 4-12 UV-Vis spectra of the sample MS2-ZnO-0.01 71 表目錄 Table 1-1 Types of pore size 3 Table 3-1 Properties of experimental raw materials. 27 Table 4-1 the sample of the mesoporous silica in the different TEOS concentration 38 Table 4-2 Schematic drawing of colloidal phase separation mechanism. 41 Table 4-3 Physical properties of mesoporous silica prepared at different silica concentration. 45 Table 4-4 The sample of the ZnO/mesoporous silica composite materials in the different Zn(acac)2 concentration. 55 Table 4-4 Texture properties of sample MS2 and nanaocomposites MS2-ZnO-0.005 and MS2-ZnO-0.01 66

    1. Mc Bain, J. W., “The Sorption of Gas and Vapours by Solids”, Rutledge and Sons, London, Ch. 5, (1932)
    2. Bhatia, J., “Zeolite catalysis principles and application, CRC press”, Florida, (1990)
    3. W. J. Ward, “Molecular sieve catalysis, in applied industrial catalysis”, Academic press, New York, vol.3, (1984)
    4. IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, “Colloid and Surface Chemistry”, Pure Appl. Chem., 31, pp. 578, 1972
    5. C. T. Kresge, M. E. Leonowice, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism“ Nature, 359, pp. 710, (1992)
    6. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Oslon, E. W. Sheppard, S.B. Higgins, J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates” J. Am. Chem. Soc. 114, pp. 10834, (1992)
    7. X. H. Jing, L. Gao, “Preparation, microstructure and properties of nanocomposite ceramics”, J. Inorg. Mater., v.16, pp. 200-206. (2001)
    8. C. B. Murray, S. H. Sun, W. Gaschler, H. Doyle, T. A. Betley and C. R. Kagan, ”Colloidal synthesis of nonocrystals and nanocrystal superlattices”, IBM J. Res. Dev., 45, pp. 47-56. (2001)
    9. L. I. Burova, D. I. Petukhov, A. A. Eliseev, A. V. Lukashin, Yu. D. Tretyakov, “Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix” , Superlattices and Microstructures, 39, pp. 257-266. (2006)
    10. C. T. Kresge, M. E. Leonowice, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism“ Nature, 359, pp. 710, (1992)
    11. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Oslon, E. W. Sheppard, S.B. Higgins, J. L. Schlenker, “A new family of mesoporous molecular sieves prepared with liquid crystal templates” J. Am. Chem. Soc. 114, pp. 10834, (1992)
    12. C. F. Cheng, Z. Luan, J. Klinowski, “The Role of Surfactant Micelles in the Synthesis of the Mesoporous Molecular Sieve MCM-41”, Langmuir, 11, pp. 2815, (1995)
    13. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stuky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, 279, pp. 543, (1998)
    14. H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackwell, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplan, “Innovative Materials Processing Strategies: A Biomimetic Approach”, Science, 255, pp. 1098-1105, (1992)
    15. Sayari, “Catalysis by Crystalline Mesoporous Molecular Sieves”, Chem. Mater., 8, pp. 1840, (1996)
    16. R. Neumann, A. M. Khenkin, “Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides”, Chem. Commun., 23, pp. 2643, (1996)
    17. B. Charkraborty, A. C. Pulikottil and B. Viswanathan, “Alkylation of naphthalene with alcohols over mesoporous MCM-41“, Catyl. Lett., 39, pp. 63, (1994)
    18. C-G. Wu, T. Bein, “Conducting Polyaniline Filaments in a Mesoporous Channel Host”, Science, 264, pp. 1757, (1994)
    19. C-G. Wu, T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Chann”, Science, 266, pp. 1013, (1994)
    20. (a) Y. S. Lee, D. Surjadi, “Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates”, Langumir, 12, pp. 6202, (1996) (b) C. H. Ko, R. Raoo, “Imaging the channels in mesoporous molecular sieves with platinum”, Chem. Commun., pp. 2467, (1996)
    21. S. C. Tsang, J. J. Davis, “Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity”, Chem. Commun., pp. 1803, (1995)
    22. T. Abe, Y. Tachibana, “Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate”, Chem. Commun., pp. 1617, (1995)
    23. W. Wang, S. Xie, W. Zhou, A. Sayari, “Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes” Chem. Mater. 15, pp. 2815-2823, (2003)
    24. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemlka , G. D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores” Science, 279, pp. 548, (1998)
    25. J. Fan, C. Yu, F. Gao, J. Lei, B.Yian L.Wang, Q. Luo, B. Tu, Zhou and D. Zhao., “Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties”, Angew. Chem. 115,pp. 3254, (2003)
    26. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. “Phase Transitions in Mesostructured Silica/Surfactant Composites: Surfactant Packing and the Role of Charge Density Matching”, Chem. Mater. 13, pp. 2247, (2001)
    27. T. F. Todros, Surfactants, Academic Press:London (1984)
    28. B. Linman and H. Wennerstrom, Micelles:Amphiphile Aggregation in Aqueous Solutions, Springer – Verlag, Heidelberg, (1980)
    29. J. N. Israelachvili, S. Marcelja, R. G. Horn, “Physical principles of membrane organization”, Q. Rev. Biophys, 13, pp. 121, (1980)
    30. D. J. Mithchell, B. W. Ninham, “Micelles, vesicles and microemulsions”, J. Chem. Soc., Faraday, Trans. II., 77, pp. 601, (1981)
    31. J. R. Mishic and M. R. Fisch, “The Size and Flexibility of Grown SDS Micelles in NaCl-H20 Soluti”, J. Phys. Chem., 92, pp. 3222, (1990)
    32. S. Ikeda, S. Ozeki, M. A. Tsnnoda, “Micelle molecular weight of dodecyldimethylammonium chloride in aqueous solutions, and the transition of micelle shape in concentrated NaCl solutions”, J. Colloid Interface Sci., 73, pp. 27, (1980)
    33. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, M. C. Carey, “Thermodynamic Analysis of the Growth of Sodium Dodecyl Sulfate Micelles”, J. Phys. Chem., 84, pp. 1044, (1980)
    34. J. Chen, T. Su, C. Mou, “Size of sodium dodecyl sulfate micelle in concentrated salt solutions”, J. Phys. Chem., 90, pp. 2418, (1986)
    35. G. Porte, J. Appell, “Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions”, J. Phys. Chem., 85, pp. 2511, (1981)
    36. H. P. Lin, C. Y. Mou, “Structural and Morphological Control of Cationic Surfactant Templated Mesoporous Silica”, Acc. Chem. Rev. 35, pp. 927, (2002)
    37. R. Zana, S. Yiv, C. Strazielle, P. Lianos, “Effect of alcohol on the properties of micellar systems I. Critical micellization concentration, micelle molecular weight and ionization degree, and solubility of alcohols in micellar solutions”, J. Colloid Interface Sci., 80, pp. 208, (1981)
    38. R. K. Iler, The Chemistry of Silica, John Wiley, New York,
    39. C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation” Phys. Stat. Solid B, 71, pp. 547 (1975)
    40. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanism behind green photoluminescence in ZnO phosphor powder”, Apply. Phys. Lett., 79, pp. 943-945, (2001)
    41. B. Jirhennsons, M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962)
    42. M. Wark, H. Kessler, G. Schulz-Ekloff, “Growth and reactivity of zinc and cadmium oxide nano-particles in zeolites”, Microporous Materials, 8, pp. 241, (1997)
    43. S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, “On a Theory of the van der Waals Adsorption of Gases”, J. Am. Chem. Soc., 62, pp. 1723, (1940)
    44. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der Waals adsorption of gases”, J. Am. Chem. Soc., 62, pp. 1723, (1940)
    45. K. S. W. Sing (UK, Chairman); D. H. Everett(UK); R. A.W. Haul(FRG); L. Koscou (Netherlands); R. A. Pierotti(USA); J. Rouque’rol(France); T. Siemieniewska (Poland). “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem., Vol. 57, No. 4, pp. 603-619, 1985.
    46. C. Yu, J. Fan, B. Tian, D. Zhao, “Morphology development of mesoporous materials: a colloidal phase separation mechanism”, Chem. Mater. 16, pp. 889, (2004)
    47. H. Jin, Q. Wu, C. Chen, D. Zhang, W. Pang, “Facile synthesis of crystal like shape mesoporous silica SBA-16”, Microporous and Mesoporous Materials, 97, pp. 141, (2006)
    48. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der Waals adsorption of gases”, J. Am. Chem. Soc., 62, pp. 1723, (1940)
    49. P. Barret, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms”, J. Am. Chem. Soc., 73, pp. 373, (1951)
    50. Wesley J. J. Stevens, Myrjam Mertens, Steven Mullens, Ivo Thijs, Gustaaf Van Tendeloo, Pegie Cool, Etienne F. Vansant, “Formation mechanism of SBA-16 spheres and control of their dimensions”, Microporous and Mesoporous Materials, 93, pp. 119-124, (2006)
    51. C. Bouvy, W. Marine, R. Sporken, B. –L. Su, “Photoluminescence properties of polyoxyethylene alkyl ether-type neutral surfactant template mesoporous materials CMI-1: The absence of the 1.9 eV PL band”, Chemical Physics Letters, 420, 225-229, (2006)
    52. Carlo M. Carbonaro, Francesca Clemente, Riccardo Corpino, P. Carlo Ricci, and Alberto Anedda, “Ultraviolet Photoluminescence of Silanol Species in Mesoporous Silica”, J. Phys. Chem. B, 109, pp. 14441-14444, (2005)
    53. Takashi Uchino, Naoko Kurumoto, and Natsuko Sagawa, “Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials”, Physical Review B, 73, pp. 233203, (2006)
    54. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, Joural of Chemical Physics, Vol. 80, No. 9, (1984)

    下載圖示 校內:2009-07-30公開
    校外:2011-07-30公開
    QR CODE