簡易檢索 / 詳目顯示

研究生: 蕭芙佳
Shiau, Fu-Jia
論文名稱: 表面電漿奈米粒子增強光聲訊號的產生
Generation of photoacoustic Signals Enhanced by Surface Plasmon Nanoparticles
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 65
中文關鍵詞: 表面電漿奈米粒子局域表面電漿共振光聲效應有限差分法奈米材料光聲造影劑
外文關鍵詞: Surface Plasmon Nanoparticles, Localized Surface Plasmon Resonance (LSPR), Photoacoustic Effect, Finite Difference Method (FDM), Nanomaterial-Based Photoacoustic Contrast Agents
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討表面電漿奈米粒子(Localized Surface Plasmon Resonance, LSPR Nanoparticles)在光聲訊號增強中的物理機制與數值模擬分析[1-9]。光聲效應為一種將光能轉換為熱能並進一步產生聲波的能量轉換過程,廣泛應用於生醫成像、熱療與奈米材料檢測等領域。其中,奈米粒子因具備獨特的局域表面電漿共振效應,能顯著提升光吸收效率,進而增強光聲訊號。然而,光聲訊號的產生不僅與光吸收能力相關,亦涉及熱傳導、熱膨脹與聲波產生的多重物理過程,尤其在奈米尺度下,熱擴散行為、時間延遲效應與空間異向性現象更為複雜。
    研究結果顯示奈米粒子的幾何形狀、材料性質與表面電漿共振特性[30],均會影響熱擴散與光聲訊號強度。特別是在近場區域,聲壓場展現出明顯的空間異向性與方向性輻射特徵[33],並可透過激發光參數與粒子結構設計進行調控。此外,本研究亦初步分析熱擴散與聲波產生之間的耦合關係,作為後續深入探討奈米尺度下多物理交互行為的基礎。
    本研究首先以理論公式計算奈米粒子的瞬間溫度上升,作為數值模擬的基礎條件。接著利用 COMSOL Multiphysics 軟體進行熱擴散模擬,分析奈米粒子及其周圍介質中的熱傳導行為,並輸出溫度場與時間二階導數數據。最後,將模擬數據匯入 MATLAB ,透過有限差分法(FDM)求解光聲波動方程,重現光聲壓力場的時間演化與空間分佈。建立了一套結合理論推導、數值模擬與訊號分析的完整流程,能有效預測與分析表面電漿奈米粒子增強光聲訊號的物理行為,為奈米材料光聲應用設計與高效光聲造影劑開發提供理論基礎與技術參考。

    This study explores the mechanisms and numerical modeling of photoacoustic signal enhancement induced by localized surface plasmon resonance (LSPR) nanoparticles. The photoacoustic effect converts optical energy into heat and subsequently generates acoustic waves, widely applied in biomedical imaging and nanomaterial characterization. LSPR nanoparticles enhance optical absorption and thus amplify photoacoustic signals, while nanoscale effects such as thermal diffusion, temporal delays, and spatial anisotropy further influence signal generation.
    The workflow involves: (1) theoretical estimation of nanoparticle temperature rise, (2) thermal diffusion simulations in COMSOL Multiphysics, and (3) solving the photoacoustic wave equation in MATLAB using the finite difference method (FDM).
    This integrated approach provides predictive insights into photoacoustic enhancement and serves as a reference for designing plasmonic nanomaterials and developing efficient photoacoustic contrast agents.

    口試委員審定書 I 摘要 II Abstract III 誌謝 XI 目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 6 1.3 本文內容 7 第二章 研究相關理論 8 2.1 光聲效應與聲波產生機制 8 2.1.1 光聲效應基本原理與能量轉換流程 8 2.1.2 熱聲轉換模型與壓力產生公式推導 10 2.1.3 格林函數與球對稱近似模型 12 2.1.4 光聲訊號與激發型態的關係 13 2.1.5 光聲效應中的非線性回饋與折射率調變 15 2.2 奈米結構中的熱擴散與光熱轉換 16 2.2.1 光熱轉換物理原理與奈米尺度特性 16 2.2.2 幾何形狀與吸收效率的關聯性 17 2.2.3 界面熱傳導與熱阻效應 18 2.2.4 熱擴散時間尺度與能量傳遞範圍 19 2.3 時間尺度與熱弛豫行為 21 2.3.1 熱鬆弛時間(Thermal Relaxation Time)與熱聲耦合條件 21 2.3.2 奈米尺度下的時間延遲與非平衡熱傳現象 23 2.3.3 熱力學–機械響應的耦合延遲效應 24 2.4 近場光聲效應與空間異向性 25 2.4.1 近場區定義與光聲行為特徵 25 2.4.2 奈米粒子幾何形狀與聲場分佈關係 26 2.4.3 熱源位置與激發方向的耦合效應 28 2.4.4 模擬與實驗觀察支持 29 第三章 數值模擬方法 33 3.1 模擬流程概述 33 3.2 理論計算與溫度初始條件設定 34 3.3 COMSOL 熱擴散數值模擬 35 3.3.1 模擬模型與幾何建構 35 3.3.2 材料參數與物理模組設置 35 3.3.3 雷射激發建模與邊界條件 36 3.4 MATLAB 光聲訊號模擬與分析 40 3.4.1 數據讀取與網格建立 40 3.4.2 溫度場內插與光聲源項計算 41 3.4.3 光聲波動方程數值求解 42 第四章 研究結果與討論 43 4.1 熱擴散模擬結果分析 43 4.1.1 模擬條件與參數設定 43 4.2 光聲壓力場模擬結果分析 45 第五章 結論與未來展望 47 5.1 結論 47 5.2 未來展望 47 參考文獻 48

    [1] Bell, A. G. "LXVIII. Upon the Production of Sound by Radiant Energy." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 11(71), 510–528 (1881)
    [2] West, G. A.; Barrett, J. J.; Siebert, D. R.; Reddy, K. V. "Photoacoustic Spectroscopy." Review of Scientific Instruments 54, 797–817 (1983).
    [3] Miklos, A.; Hess, P.; Bozoki, Z. "Application of Acoustic Resonators in Photoacoustic Trace Gas Analysis and Metrology." Review of Scientific Instruments 72, 1937–1955 (2001).
    [4] Kosterev, A. A.; Bakhirkin, Y. A.; Curl, R. F.; Tittel, F. K. "Quartz-Enhanced Photoacoustic Spectroscopy." Optics Letters 27, 1902–1904 (2002).
    [5] Czuchnowski, J.; Prevedel, R. "Photoacoustics: Seeing with Sound." Science in School 47, 14–18 (2019).
    [6] Ashkin, A. "Acceleration and Trapping of Particles by Radiation Pressure." Physical Review Letters 24, 156 (1970).
    [7] Righini, M.; Zelenina, A. S.; Girard, C.; Quidant, R. "Parallel and Selective Trapping in a Patterned Plasmonic Landscape." Nature Physics 3, 477–480 (2007).
    [8] Shi, Y.; Polat, B.; Huang, Q.; Sirbuly, D. J. "Nanoscale Fiber-Optic Force Sensors for Mechanical Probing at the Molecular and Cellular Level." Nature Protocols 13, 2714–2739 (2018).
    [9] Wang, M. M.; et al. "Microfluidic Sorting of Mammalian Cells by Optical Force Switching." Nature Biotechnology 23, 83–87 (2005).
    [10] Eckerskorn, N.; et al. "Optically Induced Forces Imposed in an Optical Funnel on a Stream of Particles in Air or Vacuum." Physical Review Applied 4, 064001 (2015).
    [11] Nowak, D.; et al. "Nanoscale Chemical Imaging by Photoinduced Force Microscopy." Science Advances 2, e1501571 (2016).
    [12] Attia, A. B. E.; et al. "A Review of Clinical Photoacoustic Imaging: Current and Future Trends." Photoacoustics 16, 100144 (2019).
    [13] Wang, L. H. V.; Hu, S. "Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs." Science 335, 1458–1462 (2012).
    [14] De La Zerda, A.; et al. "Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice." Nature Nanotechnology 3, 557–562 (2008).
    [15] Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. "Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer." Chemical Society Reviews 48, 2053–2108 (2019).
    [16] Ntziachristos, V. "Going Deeper Than Microscopy: The Optical Imaging Frontier in Biology." Nature Methods 7, 603–614 (2010).
    [17] Emelianov, S. Y.; Li, P.-C.; O’Donnell, M. "Photoacoustics for Molecular Imaging and Therapy." Physics Today 62, 34 (2009)
    [18] Wang, X.; Yan, X.; Min, Q. "Mass Transfer of Microbubble in Liquid under Multifrequency Acoustic Excitation – A Theoretical Study." Ultrasonics Sonochemistry 102, 106760 (2024).
    [19] Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. "Plasmonic Nanostructures: Artificial Molecules." Accounts of Chemical Research 40, 53–62 (2007).
    [20] Lohse, S. E.; Murphy, C. J. "The Quest for Shape Control: A History of Gold Nanorod Synthesis." Chemistry of Materials 25, 1250–1261 (2013).
    [21] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment." Journal of Physical Chemistry B 107, 668–677 (2003).
    [22] Daniel, M. C.; Astruc, D. "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology." Chemical Reviews 104, 293–346 (2004).
    [23] Weber, J.; Beard, P. C.; Bohndiek, S. E. "Contrast Agents for Molecular Photoacoustic Imaging." Nature Methods 13, 639–650 (2016).
    [24] Tsai, M.-F.; et al. "Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for In Vivo Photothermal Therapy." ACS Nano 7, 5330–5342 (2013).
    [25] García-Álvarez, R.; Chen, L.; Nedilko, A.; Sánchez-Iglesias, A.; Rix, A.; Lederle, W.; Pathak, V.; Lammers, T.; von Plessen, G.; Kostarelos, K.; Liz-Marzán, L. M.; Kuehne, A. J. C.; Chigrin, D. N. "Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Applications." ACS Photonics 7(3), 646–654 (2020).
    [26] Weber, J.; Beard, P. C.; Bohndiek, S. E. "Contrast Agents for Molecular Photoacoustic Imaging." Nature Methods 13, 639–650 (2016).
    [27] Chen, Y.-S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. "Miniature Gold Nanorods for Photoacoustic Molecular Imaging in the Second Near-Infrared Optical Window." Nature Nanotechnology 14, 465–472 (2019).
    [28] Chen, Y.-S.; et al. "Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers." Nano Letters 11, 348–354 (2011).
    [29] Chen, Y.-S.; Frey, W.; Aglyamov, S.; Emelianov, S. "Environment-Dependent Generation of Photoacoustic Waves from Plasmonic Nanoparticles." Small 8(1), 47–52 (2012).
    [30] Homan, K.; Shah, V.; Gomez, J.; Gensler, H.; Karpiouk, A.; Brannon-Peppas, L.; Emelianov, S. "Silver Nanosystems for Photoacoustic Imaging and Image-Guided Therapy." Journal of Biomedical Optics 15(2), 021316 (2010).
    [31] Mallidi, S.; Larson, T.; Tam, J.; Joshi, P. P.; Karpiouk, A.; Sokolov, K.; Emelianov, S. "Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer." Nano Letters 9(8), 2825–2831 (2009).
    [32] Li, W.; Chen, X. "Gold Nanoparticles for Photoacoustic Imaging." Nanomedicine (London) 10(2), 299–320 (2015).
    [33] Lapotko, D. "Plasmonic Nanobubbles as Tunable Cellular Probes for Cancer Theranostics." Cancers 3(1), 802–840 (2011).
    [34] Chen, Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. "Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers." Nano Letters 11(1), 348–354 (2011)
    [35] Wang, H.; Meyer, S. M.; Murphy, C. J.; Chen, Y.-S.; Zhao, Y. "Visualizing Ultrafast Photothermal Dynamics with Decoupled Optical Force Nanoscopy." Nature Communications 14, 7267 (2023).
    [36] Wang, H.; Chen, Y.-S.; Zhao, Y. "Understanding the Near-Field Photoacoustic Spatiotemporal Profile from Nanostructures." Photoacoustics 28, 100425 (2022).

    無法下載圖示 校內:2027-08-31公開
    校外:2027-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE