| 研究生: |
陳怡如 Chen, Yi-Ru |
|---|---|
| 論文名稱: |
半參數分配之貝氏估計 Bayesian Estimation of Semi-Nonparametric Distribution |
| 指導教授: |
張升懋
Chang, Sheng-Mao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 貝氏 、半參數分配 、參數估計 、Metropolis-Hastings 演算法 |
| 外文關鍵詞: | Bayesian, Estimation, Semi-nonparametric distribution, Metropolis-Hastings algorithm |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半參數分配對於描述資料的特徵相當具有彈性,其能有效地配適資料之偏態與峰數。半參數分配是由常態分配的機率密度函數與有限制之多項式係數所組成,其並不屬於指數族,在參數的估計上較為困難,因此本研究利用貝氏方法估計半參數分配之參數。首先定義參數空間並解釋為何無法使用牛頓法估計參數之最大概似估計量,接著說明如何利用 Metropolis-Hastings 演算法生成後驗分配樣本,並藉由後驗樣本估計半參數分配之參數。一般而言,為了要使均方差最小,經常會以後驗樣本平均數做為參數估計值,但使用後驗分配平均做為半參數分配之參數估計值時,會違反半參數分配參數之限制。有鑑於此,本論文採用後驗樣本與定義特定方向之平均夾角概念估計參數。此外,半參數分配中含有常態分配,本研究也提出利用此分配檢定資料常態性的方法。
Semi-nonparametric distribution is a flexible distribution to capture characteristics of data, such as skewness and multimodality. The density function of the semi-nonparametric distribution is the product of a normal density and a polynomial with certain constraints on the coefficients of the polynomial and unfortunately this distribution does not belong to the exponential family. In this thesis, we propose a Bayesian procedure for parameter estimation. We first clearly define the parameter space and explain why the popular Newton method is inapplicable to find the maximum likelihood estimate in this case. Next, we proposed a Metropolis-Hastings algorithm to generate posterior samples. To minimize mean squared error, the posterior mean is usually used. However, the posterior mean is irrelevant for the parameter estimation due to the restriction of the parameter space. Instead of averaging posterior samples, we take advantage of averaging angles between the posterior samples and the reference direction, defined in the text. Except for estimation, we also consider a Bayesian semi-nonparametric test for normality since the family of the semi-nonparametric distribution contains the normal distribution.
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12(2):171–178.
Berger, J. (2012). Lecture 2: Bayesian hypothesis testing.
Davidian, M. and Gallant, A. R. (1993). The nonlinear mixed effects model with a smooth random effects density. Biometrika, 80(3):475.
Gallant, A. R. and Nychka, D. W. (1987). Semi-nonparametric maximum likelihood estimation. Econometrica, 55(2):363–390.
Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition. Chapman and Hall/CRC.
Hastings, W. K. (1970). Monte Carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97–109.
Irincheeva, I., Cantoni, E., and Genton, M. G. (2012). Generalized linear latent variable models with flexible distribution of latent variables. Scandinavian Journal of Statistics, 39(4):663–680.
Ishwaran, H. and Zarepour, M. (2002). Exact and approximate sum representations for the dirichlet process. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 30(2):269–283.
Jeffreys, H. (1998). The theory of probability. OUP Oxford.
Labadi, D. L. A. and Zarepour, M. (2014). Goodness-of-fit tests based on the distance between the dirichlet process and its base measure. Journal of Nonparametric Statistics, 26(2):341–357.
Ma, Y. and Genton, M. G. (2004). Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics, 31(3):459–468.
Muller, P., Quintana, F. A., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis. Springer International Publishing.
Telford, R. and Cunningham, R. (1991). Sex, sport and body-size dependency of hematology in highly trained athletes. Medicine and Science in Sports and Exercise, 23:788–794.
Zhang, D. and Davidian, M. (2001). Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics, 57(3):795–802.
校內:2022-07-27公開