簡易檢索 / 詳目顯示

研究生: 林照蓉
Lin, Jiao-rung
論文名稱: 研究一個具有類似腫瘤胚胎表現型的未知基因— LRRC16B
The functional study of an oncofetal-like gene — LRRC16B
指導教授: 何中良
Ho, Chung-liang
蔣輯武
Chiang, Chi-wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 105
中文關鍵詞: Expressed Sequence Tags 資料庫腫瘤胚基因LRR蛋白細胞核入核訊號核醣核酸干擾
外文關鍵詞: LRR, NLS, EST, oncofetal gene, RNAi
相關次數: 點閱:140下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤胚基因 (oncofetal gene) 係為表現於胚胎時期的基因,隨著發育為正常成體會降低表現或是不表現,而後當腫瘤形成時,其腫瘤胚基因又再次大量表現。一般較為人熟知的腫瘤胚基因有 α-fetoprotein (AFP) 及 Glypican-3 (GPC3),這類基因在肝癌上是很好的癌症診斷指標,基於這樣的概念,本實驗室從 Unigene、ORESTES 等資料庫中,建立屬於我們自己的資料庫,其中分為:胚胎時期、成人正常時期、腫瘤時期這三群資料庫。為了想找尋有 oncofetal genes/protein特徵的基因,我們利用 α-fetoprotein(AFP) 的 EST expression profile 當閥值 (threshold) 篩選出69個基因,其中30個在文獻中有較多的研究,另外39個基因在功能上則屬於未知的情況。之前本實驗室以 RT-PCR 的方式針對這69個基因做篩選驗證的結果中,我們鎖定一個功能未知基因— LRRC16B (leucine rich repeat containing 16B) 針對它做功能性探討 (Functional study),為了研究方便,我們將此一基因暫時命名為 Embryonic Gene Re-express in Tumor–Unknown 5 (EGRT-U5),簡稱為 U5。 RT-PCR 篩選結果發現EGRT-U5 幾乎在不同腫瘤細胞株都有表現,而正常成人組織除了在 bone marrow、brain 與 testis 等器官中表現比較顯著,其餘組織相較之下,表現量明顯低許多,此外在胎兒各器官組織皆可觀察到其表現。而偵測多種人類腫瘤,如乳癌、卵巢癌、肺癌等,整體來說在腫瘤組織中,EGRT-U5 表現量較非腫瘤組織高。
    利用生物資訊軟體分析發現此未知蛋白之 N-terminal 具有 LRR domain,而 C-terminal 利用 PSORT II 與 motif scan 則預測出含有數個細胞核定位訊號 (NLS),因此為了研究方便,將 EGRT-U5 分成三段來討論,依序分別為全長、具有 LRR domain 之一、二段與預測出含有 NLS之第三段。首先我們將全長以及其 truncated forms 與綠色螢光蛋白(EGFP) 作融合,得到EGRT-U5-full-EGFP、EGRT-U5-1.2-EGFP和EGRT-U5-3-EGFP 構築質體,運用短暫性轉染與篩選穩定表現 EGRT-U5 與 truncated forms 之 HEK293T 細胞群(stable pool)來作以下功能性探討,首先利用螢光顯微鏡觀察分佈情形,結果發現EGRT-U5-full-EGFP與EGRT-U5-1.2-EGFP融合蛋白主要分布於細胞質,偶而會聚集於細胞膜上,而 EGRT-U5-3-EGFP 融合蛋白則明顯分布於細胞核內。此外我們發現穩定表現EGRT-U5-full-EGFP與EGRT-U5-3-EGFP之HEK293T 細胞群,細胞型態明顯由人類腎臟上皮細胞的型態轉變為狹長狀。在細胞生長的實驗上結果顯示穩定表現EGRT-U5 全長與第三段之HEK293T 細胞群相對於對照組而言生長速率增加,其中穩定表現 EGRT-U5-3-EGFP 之 HEK293T 細胞群生長速率更加顯著。除了過度表現,還利用核糖核酸干擾技術 (RNAi),短暫性轉染shRNA抑制穩定表現EGRT-U5全長與第三段之HEK293T 細胞群,實驗結果顯示其生長速率降低,然而抑制內生性 EGRT-U5 表現量最多之卵巢腫瘤細胞株— BG-1,短暫性轉染 shRNA 72小時後對細胞增長只有些微抑制,並不顯著。由西方墨點法實驗中發現此蛋白似乎具有insoluble 之特性。此外由於經由生物軟體預測出 EGRT-U5 第三段含有數個細胞核定位訊號,因此本實驗亦對 EGRT-U5-3-EGFP 融合蛋白入核機制利用定點突變做了一些探討,但是尚未找到可能之細胞核定位訊號。所以EGRT-U5目前發現在扮演細胞生長的角色上似乎佔有一席之地,而在未來可以更深入的研究此基因在癌症發生上所扮演的角色為何。

    Oncofetal proteins, such as α-fetoprotein (AFP) and IMP-1, are proteins that are expressed in embryonic stage, down-regulated in adult normal stage, but re-expressed in tumors. These proteins are useful in cancer diagnosis and follow-up. Previously, we set up a bioinformatic program-Xcrunch to find candidate genes with potential oncofetal expression patterns. To confirm this finding, the candidate genes were screened for their expression in cancer cell lines, normal tissues, tumor tissues and rat tissues. We also collected some human tumor/ non-tumor tissues derived from kinds of organs such as breast, lung, ovary, kidney, liver and uterus to carry on gene analysis we collect several organs of different developmental stages from embryonic, newborn, and adult rats, respectively. One of the genes, LRRC16B (EGRT-U5, Embryonic Gene Re-express in Tumor-Unknown 5), was found to be up-regulated in many tumors and have an oncofetal-like expression pattern. LRRC16B (EGRT-U5) is a functionally unknown gene with several leucine rich repeats(LRRs) and nuclear localization signals.
    In order to study the functions of EGRT-U5, we had cloned the full-length cDNA along with several truncated constructs— U5-full-length-EGFP and U5-3-EGFP. We had established the HEK293T pool stably expressing EGRT-U5-full-length and its truncated fusion protein. The western blot experiments were being carried out to confirm these constructs and we found EGRT-U5-full-length fusion protein had some insoluble property in transient transfection experiments. Overexpression experiments using those constructs were undertaken. After transfecting these constructs into HEK293T cells, the green fluorescent signal showed that the U5-full-length-EGFP fusion proteins are present diffusely in the cytosol, accenturated at the cell membrane, and forming dot-like structures in the nucleus, however, U5-3-EGFP fusion proteins were predominantly localized to the nuclei. Interestingly, in a HEK293T pool stably expressing U5-3-EGFP fusion proteins caused significantly morphology change. Moreover, overexpression of U5-full-length-EGFP and U5-3-EGFP significantly increased the growth of HEK293T cells as compared to that of expressing vector-alone cells by XTT assay. To investigate whether EGRT-U5 affected cell survival, we performed colony formation assay. EGRT-U5 overexpression in a HEK293T pool stably expressing U5-full-length-EGFP fusion proteins resulted in a increased colonogenicity. In addition, shRNA transient transfection was performed on ovary and liver cancer lines to knockdown EGRT-U5 and slightly suppressed the proliferation 72hr post transfection in ovary cancer line. In summary, our findings suggested EGRT-U5 might play important roles in tumorgenesis.

    中文摘要……………………………………………………………… I 英文摘要……………………………………………………………III 誌謝……………………………………………………………………V 目錄………………………………………………………………VII 表目錄…………………………………………………………………X 圖目錄…………………………………………………………………XI 第一章 緒論 1.1 Oncofetal Gene (腫瘤胚基因)…………………………1 1.2 Expressed Sequence Tags 資料庫………………………2 1.3 找尋新的 oncofetal gene – LRRC16B (EGRT-U5…4 1.4 生物資訊軟體預測 ……………………………………………5 -1.4.1 NCBI……………………………………………………5 -1.4.2 Ensembl………………………………………………6 -1.4.3 Predicted cellular localization and motifs…6 1.5 細胞核定位訊號與蛋白質入核運送………………………7 -1.5.1 細胞核運送……………………………………………7 -1.5.2 細胞核運送機制………………………………………7 -1.5.3 細胞核定位訊號………………………………………9 -1.5.4 生物軟體預測之細胞核定位訊號…………………10 1.6 LRR (Leucine-rich repeat)……………………………12 -1.6.1 LRR 蛋白之結構……………………………………12 -1.6.2 LRR 蛋白在生物反應中扮演之功能………………12 1.7 核糖核酸干擾 (RNAi interference, RNAi)………………13 -1.7.1 核糖核酸干擾現象之發現…………………………13 -1.7.2 核糖核酸干擾機制…………………………………14 -1.7.3 核糖核酸干擾之應用………………………………14 -1.7.4 核糖核酸干擾技術應用之安全考量………………16 1.8 實驗目的……………………………………………………18 第二章 實驗材料與方法 2.1 細胞的培養程序……………………………………………20 2.2 基本分子生物技術…………………………………………21 2.3 細胞相關實驗………………………………………………28 第三章 實驗結果 3.1 針對過度表現EGRT-U5的細胞作功能性探討………………36 -3.1.1 構築表現EGRT-U5 full-length與truncated forms的各種表現質體………………………………………………36 -3.1.2 觀察細胞之螢光表現………………………………37 -3.1.3 西方點墨法分析……………………………………38 -3.1.4過度表現U5-full-EGFP與U5-3-EGFP融合蛋白促進 HEK293T細胞的生長…………………………………40 3.2 抑制穩定表現EGRT-U5的HEK293T細胞群以及內生性 EGRT-U5 作功能性探討 (functional assay)……………41 -3.2.1 從EGRT-U5基因編碼區域 (coding region) 篩選有效的RNAi 標的序列…………………………………………41 -3.2.2以RNAi技術抑制穩定表現EGRT-U5的HEK293T細胞 群,觀察其生長速率差異性…………………………42 -3.2.3以RNAi技術抑制內生性EGRT-U5表現量最多之腫瘤細 胞株,觀察其生長速率是否有差異性………………43 3.3 探討EGRT-U5第三段 (EGRT-U5-3-EGFP) 入核之機制……44 -3.3.1利用生物資訊軟體預測可能之EGRT-U5細胞核定位訊 號(NLS)………………………………………………………44 -3.3.2針對生物資訊軟體預測位於EGRT-U5-3-EGFP融合蛋白上可能的細胞核定位訊號 (NLS) 做入核之探討…………44 第四章 討論…………………………………………………………47 第五章 參考文獻……………………………………………………56 第六章 表……………………………………………………………68 第七章 圖……………………………………………………………72 附圖…………………………………………………………………96 作者自述……………………………………………………………105

    Akmaev, V. R. and Wang, C. J. Correction of sequence-based artifacts in serial analysis of gene expression. Bioinformatics. 20(8): 1254-63 (2004).
    Aouacheria, A.,Navratil, V.,Barthelaix, A.,Mouchiroud, D. and Gautier, C. Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues. BMC Genomics. 7: 94 (2006).
    Ariel, I.,Miao, H. Q.,Ji, X. R.,Schneider, T.,Roll, D.,De Groot, N.,Hochberg, A. and Ayesh, S. Imprinted H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma. Mol Pathol. 51(1): 21-5 (1998).
    Barinka, C.,Sacha, P.,Sklenar, J.,Man, P.,Bezouska, K.,Slusher, B. S. and Konvalinka, J. Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci. 13(6): 1627-35 (2004).
    Bernstein, E.,Caudy, A. A.,Hammond, S. M. and Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409(6818): 363-6 (2001).
    Bhoumik, A.,Huang, T. G.,Ivanov, V.,Gangi, L.,Qiao, R. F.,Woo, S. L.,Chen, S. H. and Ronai, Z. An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. J Clin Invest. 110(5): 643-50 (2002).
    Bilder, D. and Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature. 403(6770): 676-80 (2000).
    Boguski, M. S. and Schuler, G. D. ESTablishing a human transcript map. Nat Genet. 10(4): 369-71 (1995).
    Bonner, A. E.,Wang, Y. and You, M. Gene expression profiling of mouse teratocarcinomas uncovers epigenetic changes associated with the transformation of mouse embryonic stem cells. Neoplasia. 6(5): 490-502 (2004).
    Brummelkamp, T. R.,Bernards, R. and Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2(3): 243-7 (2002).
    Campagne, F. and Skrabanek, L. Mining expressed sequence tags identifies cancer markers of clinical interest. BMC Bioinformatics. 7: 481 (2006).
    Chen, L. M.,Kelly, M. L.,Rojas, J. D.,Parker, M. D.,Gill, H. S.,Davis, B. A. and Boron, W. F. Use of a new polyclonal antibody to study the distribution and glycosylation of the sodium-coupled bicarbonate transporter NCBE in rodent brain. Neuroscience. 151(2): 374-85 (2008).
    Chi, J. T.,Chang, H. Y.,Wang, N. N.,Chang, D. S.,Dunphy, N. and Brown, P. O. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A. 100(11): 6343-6 (2003).
    Cleynen, I.,Brants, J. R.,Peeters, K.,Deckers, R.,Debiec-Rychter, M.,Sciot, R.,Van De Ven, W. J. and Petit, M. M. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol Cancer Res. 5(4): 363-72 (2007).
    Colantuoni, C.,Purcell, A. E.,Bouton, C. M. and Pevsner, J. High throughput analysis of gene expression in the human brain. J Neurosci Res. 59(1): 1-10 (2000).
    Cole, L. A.,Shahabi, S.,Oz, U. A.,Bahado-Singh, R. O. and Mahoney, M. J. Hyperglycosylated human chorionic gonadotropin (invasive trophoblast antigen) immunoassay: A new basis for gestational Down syndrome screening. Clin Chem. 45(12): 2109-19 (1999).
    Costantini, D. L.,Hu, M. and Reilly, R. M. Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications. Cancer Biother Radiopharm. 23(1): 3-24 (2008).
    Covey, S. N.,Turner, D. S.,Lucy, A. P. and Saunders, K. Host regulation of the cauliflower mosaic virus multiplication cycle. Proc Natl Acad Sci U S A. 87(5): 1633-7 (1990).
    Crowe, S. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication, by Martinez et al. Aids. 17 Suppl 4: S103-5 (2003).
    Dalgin, G. S.,Alexe, G.,Scanfeld, D.,Tamayo, P.,Mesirov, J. P.,Ganesan, S.,Delisi, C. and Bhanot, G. Portraits of breast cancer progression. BMC Bioinformatics. 8: 291 (2007).
    Dennis, J. W.,Granovsky, M. and Warren, C. E. Protein glycosylation in development and disease. Bioessays. 21(5): 412-21 (1999).
    Dorn, G.,Patel, S.,Wotherspoon, G.,Hemmings-Mieszczak, M.,Barclay, J.,Natt, F. J.,Martin, P.,Bevan, S.,Fox, A.,Ganju, P.,Wishart, W. and Hall, J. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32(5): e49 (2004).
    Eilbracht, J. and Schmidt-Zachmann, M. S. Identification of a sequence element directing a protein to nuclear speckles. Proc Natl Acad Sci U S A. 98(7): 3849-54 (2001).
    Elbashir, S. M.,Harborth, J.,Lendeckel, W.,Yalcin, A.,Weber, K. and Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411(6836): 494-8 (2001).
    Farghaly, S. A. Tumor markers in gynecologic cancer. Gynecol Obstet Invest. 34(2): 65-72 (1992).
    Fire, A.,Xu, S.,Montgomery, M. K.,Kostas, S. A.,Driver, S. E. and Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391(6669): 806-11 (1998).
    Gao, W. Q.,Liu, X. L. and Hatten, M. E. The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation. Cell. 68(5): 841-54 (1992).
    Gavel, Y. and Von Heijne, G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3(5): 433-42 (1990).
    Ge, Q.,Mcmanus, M. T.,Nguyen, T.,Shen, C. H.,Sharp, P. A.,Eisen, H. N. and Chen, J. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A. 100(5): 2718-23 (2003).
    Gonzalez-Alegre, P.,Bode, N.,Davidson, B. L. and Paulson, H. L. Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. J Neurosci. 25(45): 10502-9 (2005).
    Grimm, D.,Streetz, K. L.,Jopling, C. L.,Storm, T. A.,Pandey, K.,Davis, C. R.,Marion, P.,Salazar, F. and Kay, M. A. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 441(7092): 537-41 (2006).
    Grimson, A.,Farh, K. K.,Johnston, W. K.,Garrett-Engele, P.,Lim, L. P. and Bartel, D. P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 27(1): 91-105 (2007).
    Grozdanov, P. N.,Yovchev, M. I. and Dabeva, M. D. The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Invest. 86(12): 1272-84 (2006).
    Guan, H.,Zhou, Z.,Wang, H.,Jia, S. F.,Liu, W. and Kleinerman, E. S. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model. Clin Cancer Res. 11(7): 2662-9 (2005).
    Guo, S. and Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 81(4): 611-20 (1995).
    Halbleib, J. M. and Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20(23): 3199-214 (2006).
    Haltiwanger, R. S. and Lowe, J. B. Role of glycosylation in development. Annu Rev Biochem. 73: 491-537 (2004).
    Harper, S. Q.,Staber, P. D.,He, X.,Eliason, S. L.,Martins, I. H.,Mao, Q.,Yang, L.,Kotin, R. M.,Paulson, H. L. and Davidson, B. L. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci U S A. 102(16): 5820-5 (2005).
    Hirai-Fujita, Y.,Yamamoto-Hino, M.,Kanie, O. and Goto, S. N-Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity. FEBS Lett. 582(17): 2572-6 (2008).
    Hishinuma, M.,Ohashi, K. I.,Yamauchi, N.,Kashima, T.,Uozaki, H.,Ota, S.,Kodama, T.,Aburatani, H. and Fukayama, M. Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology. 49(5): 479-86 (2006).
    Horzempa, J.,Comer, J. E.,Davis, S. A. and Castric, P. Glycosylation substrate specificity of Pseudomonas aeruginosa 1244 pilin. J Biol Chem. 281(2): 1128-36 (2006).
    Hsu, S. C. and Hung, M. C. Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem. 282(14): 10432-40 (2007).
    Inohara, N.,Koseki, T.,Del Peso, L.,Hu, Y.,Yee, C.,Chen, S.,Carrio, R.,Merino, J.,Liu, D.,Ni, J. and Nunez, G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem. 274(21): 14560-7 (1999).
    Jackson, A. L.,Burchard, J.,Leake, D.,Reynolds, A.,Schelter, J.,Guo, J.,Johnson, J. M.,Lim, L.,Karpilow, J.,Nichols, K.,Marshall, W.,Khvorova, A. and Linsley, P. S. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. Rna. 12(7): 1197-205 (2006).
    Jans, D. A. Nuclear signaling pathways for polypeptide ligands and their membrane receptors? Faseb J. 8(11): 841-7 (1994).
    Jans, D. A.,Xiao, C. Y. and Lam, M. H. Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays. 22(6): 532-44 (2000).
    Jia, F.,Zhang, Y. Z. and Liu, C. M. A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference. Biotechnol Lett. 28(20): 1679-85 (2006).
    Kajava, A. V. Structural diversity of leucine-rich repeat proteins. J Mol Biol. 277(3): 519-27 (1998).
    Kann, M.,Schmitz, A. and Rabe, B. Intracellular transport of hepatitis B virus. World J Gastroenterol. 13(1): 39-47 (2007).
    Kazerounian, S. and Aho, S. Characterization of periphilin, a widespread, highly insoluble nuclear protein and potential constituent of the keratinocyte cornified envelope. J Biol Chem. 278(38): 36707-17 (2003).

    Kobe, B. and Deisenhofer, J. Proteins with leucine-rich repeats. Curr Opin Struct Biol. 5(3): 409-16 (1995).
    Kobe, B. and Kajava, A. V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 11(6): 725-32 (2001).
    Komeili, A. and O'shea, E. K. New perspectives on nuclear transport. Annu Rev Genet. 35: 341-64 (2001).
    Kuehl, L.,Childers, T. J. and Mccauley, R. M. The occurrence of extended acidic sequences in nonhistone chromosomal proteins. Arch Biochem Biophys. 248(1): 272-81 (1986).
    Kusov, Y.,Kanda, T.,Palmenberg, A.,Sgro, J. Y. and Gauss-Muller, V. Silencing of hepatitis A virus infection by small interfering RNAs. J Virol. 80(11): 5599-610 (2006).
    Lange, A.,Mills, R. E.,Lange, C. J.,Stewart, M.,Devine, S. E. and Corbett, A. H. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. 282(8): 5101-5 (2007).
    Liao, B.,Patel, M.,Hu, Y.,Charles, S.,Herrick, D. J. and Brewer, G. Targeted knockdown of the RNA-binding protein CRD-BP promotes cell proliferation via an insulin-like growth factor II-dependent pathway in human K562 leukemia cells. J Biol Chem. 279(47): 48716-24 (2004).
    Lin, S. Y.,Makino, K.,Xia, W.,Matin, A.,Wen, Y.,Kwong, K. Y.,Bourguignon, L. and Hung, M. C. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 3(9): 802-8 (2001).
    Linhoff, M. W.,Harton, J. A.,Cressman, D. E.,Martin, B. K. and Ting, J. P. Two distinct domains within CIITA mediate self-association: involvement of the GTP-binding and leucine-rich repeat domains. Mol Cell Biol. 21(9): 3001-11 (2001).
    Lo, H. W.,Ali-Seyed, M.,Wu, Y.,Bartholomeusz, G.,Hsu, S. C. and Hung, M. C. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem. 98(6): 1570-83 (2006).
    Luo, M. C.,Zhang, D. Q.,Ma, S. W.,Huang, Y. Y.,Shuster, S. J.,Porreca, F. and Lai, J. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain. 1: 29 (2005).
    Marshall, R. D. Glycoproteins. Annu Rev Biochem. 41: 673-702 (1972).
    Matsuoka, K.,Taoka, M.,Satozawa, N.,Nakayama, H.,Ichimura, T.,Takahashi, N.,Yamakuni, T.,Song, S. Y. and Isobe, T. A nuclear factor containing the leucine-rich repeats expressed in murine cerebellar neurons. Proc Natl Acad Sci U S A. 91(21): 9670-4 (1994).
    Mccann, J. P.,Mayes, J. S.,Hendricks, G. R.,Harjo, J. B. and Watson, G. H. Subcellular distribution and glycosylation pattern of androgen receptor from sheep omental adipose tissue. J Endocrinol. 169(3): 587-93 (2001).
    Mencinger, M.,Panagopoulos, I.,Contreras, J. A.,Mitelman, F. and Aman, P. Expression analysis and chromosomal mapping of a novel human gene, APRIL, encoding an acidic protein rich in leucines. Biochim Biophys Acta. 1395(2): 176-80 (1998).
    Michael, W. M.,Choi, M. and Dreyfuss, G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell. 83(3): 415-22 (1995).
    Monk, M. and Holding, C. Human embryonic genes re-expressed in cancer cells. Oncogene. 20(56): 8085-91 (2001).
    Mutai, H.,Toyoshima, Y.,Sun, W.,Hattori, N.,Tanaka, S. and Shiota, K. PAL31, a novel nuclear protein, expressed in the developing brain. Biochem Biophys Res Commun. 274(2): 427-33 (2000).
    Nakatsura, T. and Nishimura, Y. Usefulness of the novel oncofetal antigen glypican-3 for diagnosis of hepatocellular carcinoma and melanoma. BioDrugs. 19(2): 71-7 (2005).
    Napoli, C.,Lemieux, C. and Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 2(4): 279-289 (1990).
    Niemann, H.,Carnwath, J. W. and Kues, W. Application of DNA array technology to mammalian embryos. Theriogenology. 68 Suppl 1: S165-77 (2007).
    Ohtsubo, K. and Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell. 126(5): 855-67 (2006).
    Petignat, P.,Boulvain, M. and Vassilakos, P. Human chorionic gonadotropin follow-up in patients with molar pregnancy: a time for reevaluation. Obstet Gynecol. 102(3): 642-3; author reply 643 (2003).
    Raoul, C.,Barker, S. D. and Aebischer, P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther. 13(6): 487-95 (2006).
    Reagan-Shaw, S. and Ahmad, N. RNA interference-mediated depletion of phosphoinositide 3-kinase activates forkhead box class O transcription factors and induces cell cycle arrest and apoptosis in breast carcinoma cells. Cancer Res. 66(2): 1062-9 (2006).
    Rudd, P. M.,Elliott, T.,Cresswell, P.,Wilson, I. A. and Dwek, R. A. Glycosylation and the immune system. Science. 291(5512): 2370-6 (2001).
    Sah, D. W. Therapeutic potential of RNA interference for neurological disorders. Life Sci. 79(19): 1773-80 (2006).
    Sarandakou, A.,Protonotariou, E. and Rizos, D. Tumor markers in biological fluids associated with pregnancy. Crit Rev Clin Lab Sci. 44(2): 151-78 (2007).
    Schefer, H.,Mattmann, S. and Joss, R. A. Hereditary persistence of alpha-fetoprotein. Case report and review of the literature. Ann Oncol. 9(6): 667-72 (1998).
    Schiffelers, R. M.,Ansari, A.,Xu, J.,Zhou, Q.,Tang, Q.,Storm, G.,Molema, G.,Lu, P. Y.,Scaria, P. V. and Woodle, M. C. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32(19): e149 (2004).
    Shuey, D. J.,Mccallus, D. E. and Giordano, T. RNAi: gene-silencing in therapeutic intervention. Drug Discov Today. 7(20): 1040-6 (2002).
    Singer, O.,Marr, R. A.,Rockenstein, E.,Crews, L.,Coufal, N. G.,Gage, F. H.,Verma, I. M. and Masliah, E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci. 8(10): 1343-9 (2005).
    Siomi, H. and Dreyfuss, G. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol. 129(3): 551-60 (1995).
    Stark, G. R.,Kerr, I. M.,Williams, B. R.,Silverman, R. H. and Schreiber, R. D. How cells respond to interferons. Annu Rev Biochem. 67: 227-64 (1998).
    Sun, W.,Kimura, H.,Hattori, N.,Tanaka, S.,Matsuyama, S. and Shiota, K. Proliferation related acidic leucine-rich protein PAL31 functions as a caspase-3 inhibitor. Biochem Biophys Res Commun. 342(3): 817-23 (2006).
    Tan, P. H.,Yang, L. C.,Shih, H. C.,Lan, K. C. and Cheng, J. T. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther. 12(1): 59-66 (2005).
    Thomas, C. E.,Ehrhardt, A. and Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4(5): 346-58 (2003).
    Tong, Z. B.,Nelson, L. M. and Dean, J. Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm Genome. 11(4): 281-7 (2000).
    Trojan, J.,Naval, X.,Johnson, T.,Lafarge-Frayssinet, C.,Hajeri-Germond, M.,Farges, O.,Pan, Y.,Uriel, J.,Abramasky, O. and Ilan, J. Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures. Mol Reprod Dev. 42(4): 369-78 (1995).
    Vanegas, M.,Llano, M.,Delgado, S.,Thompson, D.,Peretz, M. and Poeschla, E. Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J Cell Sci. 118(Pt 8): 1733-43 (2005).
    Vogelstein, B. and Kinzler, K. W. Cancer genes and the pathways they control. Nat Med. 10(8): 789-99 (2004).
    Wang, A. G.,Yoon, S. Y.,Oh, J. H.,Jeon, Y. J.,Kim, M.,Kim, J. M.,Byun, S. S.,Yang, J. O.,Kim, J. H.,Kim, D. G.,Yeom, Y. I.,Yoo, H. S.,Kim, Y. S. and Kim, N. S. Identification of intrahepatic cholangiocarcinoma related genes by comparison with normal liver tissues using expressed sequence tags. Biochem Biophys Res Commun. 345(3): 1022-32 (2006).
    Wu, H.,Maciejewski, M. W.,Marintchev, A.,Benashski, S. E.,Mullen, G. P. and King, S. M. Solution structure of a dynein motor domain associated light chain. Nat Struct Biol. 7(7): 575-9 (2000).
    Wu, W.,Hodges, E. and Hoog, C. Thorough validation of siRNA-induced cell death phenotypes defines new anti-apoptotic protein. Nucleic Acids Res. 34(2): e13 (2006).
    Xu, L.,Geman, D. and Winslow, R. L. Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinformatics. 8: 275 (2007).
    Xu, P.,Mitchelhill, K. I.,Kobe, B.,Kemp, B. E. and Zot, H. G. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Proc Natl Acad Sci U S A. 94(8): 3685-90 (1997).
    Yarema, K. J. and Bertozzi, C. R. Characterizing glycosylation pathways. Genome Biol. 2(5): REVIEWS0004 (2001).
    Yuan, J.,Kramer, A.,Matthess, Y.,Yan, R.,Spankuch, B.,Gatje, R.,Knecht, R.,Kaufmann, M. and Strebhardt, K. Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene. 25(12): 1753-62 (2006).
    Zhang, L.,Yang, N.,Mohamed-Hadley, A.,Rubin, S. C. and Coukos, G. Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun. 303(4): 1169-78 (2003).
    Zynger, D. L.,Dimov, N. D.,Luan, C.,Teh, B. T. and Yang, X. J. Glypican 3: a novel marker in testicular germ cell tumors. Am J Surg Pathol. 30(12): 1570-5 (2006).

    周靖恆,結合生物資訊的方法探討腫瘤相關基因在人類腎臟癌中的表現,國立成功大學分子醫學研究所碩士論文,民國九十四年。
    吳宗樺,研究一個具有腫瘤胚胎表現型的功能未知基因,國立成功大學分子醫學研究所碩士論文,民國九十六年。

    下載圖示 校內:2011-08-27公開
    校外:2011-08-27公開
    QR CODE