簡易檢索 / 詳目顯示

研究生: 林孝勳
Lin, Shiau-Shiun
論文名稱: 即時性預測控制在機器手臂上之應用
Application of Real-Time Predictive Control to Robot Arms
指導教授: 莊哲男
Juang, Jer-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 60
中文關鍵詞: 最佳控制系統識別三軸機器手動態方程式
外文關鍵詞: predictive control, optimal control, robot Arm, system identification
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何控制機器手臂使其移動沿著預先找出的最佳移動軌跡是一個重要的研究課題,因為這樣可以同時使得該機器手臂減少能量損耗與增加工作效率。本論文利用最佳控制的方式來控制機器手臂模型並與預測控制方法的數值結果做比較。使用預測控制其原因之一為其控制法則中有引入最小預測力量的概念,可使系統達到最小能量輸出。另一個原因是在不需要知道系統模型的情況下可藉由蒐集輸入輸出資料且用系統識別的方式來設計控制器。

    由於機器手臂移動的方式約略可分成擺動和高舉,其基本概念相當於單擺及倒單擺模型的行為,因此我們利用單擺及倒單擺的模型得到動態方程式,以其比較兩種控制方法的模擬結果。再把控制方法使用在三軸機器手模型上,並將角度模擬結果放入幾何運動學中觀察手臂軌跡。我們使用時間間隔1毫秒模擬所有的機器手臂模型。在預測控制中,我們將非線性系統的輸入輸出資料使用系統識別後可得線性非時變系統進行控制,而最佳控制則用LQR。兩種控制方法在手臂上的軌跡表現,預測控制比最佳控制可在有限時間內達到目標位置。

    Both optimal control and predictive control are used and compared to control the model of a robot arm. The main reason for using the predictive control approach is that we want to attain the optimal performance by predicting the force/torque required to track a desired output trajectory. Another reason is that the predictive control approach enables controller design to be fulfilled in real time by system identification without knowing the system model.

    The moving motions of a robot arm can be roughly classified into the swinging motion and the raising motion, and their movement patterns resemble the movement of a pendulum and an inverted pendulum, respectively. Thus we resort to the models of a pendulum and an inverted pendulum for deriving the dynamic equations and to compare the control results of the optimal control approach and the predictive control approach. We then apply the two control approaches to a three-link robot arm. For predictive control, we utilize the input-output data from a nonlinear system to perform system identification and acquire the linear time-invariant system to control our model. For optimal control, we use the linear quadratic regulator design on a linearized model for small motion. We derive the arm trajectories from simulated results for angles, as done in geometric kinematics. All simulations of robot arms are performed on time intervals of 1 millisecond. A comparison of these two trajectories shows that the predictive control approach is superior to the optimal control approach in reaching our desired position in finite time.

    中文摘要 i Abstract ii 誌謝 iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objective and Approach 2 1.3 Thesis Contribution 3 1.4 Thesis Organization 3 2 Modeling System Structure 4 2.1 Kinematic System 4 2.2 Nonlinear Dynamics 8 2.2.1 Pendulum System 10 2.2.2 Inverted Pendulum System 15 2.2.3 Robot Arm System 16 2.3 Linearization 18 2.3.1 Pendulum System 21 2.3.2 Inverted Pendulum System 22 2.3.3 Robot Arm System 23 3 Control Approaches for a Robot Arm 24 3.1 Optimal Control 24 3.2 Predictive Control 26 4 Numerical Experiment 32 5 Conclusions and Future Work 56 5.1 Conclusions 56 5.2 Future Work 57 References 58 個人簡歷 60

    [1] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and G. Sandini, ``Approximate optimal control for reaching and trajectory planning in a humanoid robot,' in International Conference on Intelligent Robots and Systems(IROS), pp. 1290--1296, October 2010.

    [2] A. Khoukhi and Y. Hamam, ``Mobile robot kinematic, dynamic, and mobility,' in Fifth International Conference on Advanced Robotics(ICAR). 'Robots in Unstructured Environments', pp. 1111--1117 vol.2, June 1991.

    [3] R. F. F. Nori, ``Linear optimal control problems and quadratic cost function estimation,' in 12th Mediterranean Conference on Control and Automation, 2004.

    [4] M. Xin, S. Balakrishnan, and Z. Huang, ``Robust state dependent riccati equation based robot manipulator control,' in Proceedings of IEEE Conference on Control Applications(CCA)., pp. 369--374, 2001.

    [5] C. Kuo, C. Yang, and C. Margolin, ``Optimal controller design for nonlinear systems,' Proceedings of IEE on Control Theory and Applications, vol. 145, pp. 97--105, January 1998.

    [6] V. M. de Oliveira and W. F. Lages, ``Linear predictive control of a brachiation robot,' in Canadian Conference on Electrical and Computer Engineering(CCECE)., pp. 1518--1521, May 2006.

    [7] A. Khoukhi, ``An optimal design for robot dynamic control,' in Proceedings of IEEE Conference on Power Electronics and Drive Systems(PEDS)., vol. 1, pp. 382--387 vol.1, 1999.

    [8] K. Iqbal and Y. Zheng, ``Predictive control application in arm manipulator coordination,' in Proceedings of IEEE Conference on Intelligent Control., pp. 409--414, July 1997.

    [9] Z. Zhang, W. Wang, and S. Siddiqui, ``Predictive function control of a two-link robot manipulator,' in IEEE Conference on Mechatronics and Automation., vol. 4, pp. 2004--2009 Vol. 4, July 2005.

    [10] C. Brandle, ``Double pendulum robotic arm with toothed clutches,' Master's thesis, Department of Mechanical and Process Engineering, ETH Z¨urich, Switzerland, 2011.

    [11] A. Bogdanov, ``Optimal control of a double inverted pendulum on a cart,' tech. rep.,CSE-04-006, December 2004.

    [12] H. Asada and J. Slotine, Robot Analysis and Control. Wiley-interscience, J. Wiley,1986.

    [13] J.-N. Juang and M. Q. Phan, Identification and control of mechanical systems. November 2006.

    無法下載圖示 校內:2017-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE