| 研究生: |
李哲宇 Lee, Jhe-Yu |
|---|---|
| 論文名稱: |
有限時間內可逆具共生熱之熱力循環系統之最大有用能率分析 Finite Time Endoreversible Maximum Useful Energy Rate Analysis of Thermodynamics Cogeneration Cycles |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven 陳朝光 Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 最大有用能率 、熱共生 、有限時間熱力學 、最佳化 |
| 外文關鍵詞: | optimization, finite time thermodynamics, maximum useful energy rate, cogeneration |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用有限時間熱力學探討具熱共生裝置之不同熱機的性能最佳化。分析方法採用「整體有用能率」研究穩態穩流熱力系統中的功率輸出以及有用熱的輸出。研究的主題包括內可逆具熱共生之奧圖熱循環、內可逆具熱共生之阿特金森熱循環,以及內不可逆具熱共生之焦耳–布雷登熱循環。研究結果發現,採用整體有用能率為目標函數進行最佳化研究下,不但可決定系統中整體有用能率的最大值外,也確認了在整體有用能率為最大時系統對應之熱效率值。
除此之外,本文亦探討系統參數(如:壓力比參數、使用溫度之比)對最大整體有用能率與其所對應之熱效率的影響,並分析無因次化之整體有用能率與熱效率間的變化關係。對於在內不可逆具熱共生之焦耳–布雷登熱循環中,本文分析不同的不可逆情形對系統中整體有用能率的影響。
因此,運用「整體有用能率」研究具熱共生之熱力循環系統,不但可以節省能源的耗用,更可依照系統參數的關係以降低工業成本。
In this study, the finite-time thermodynamics method has been utilized on the performance optimization of cogeneration cycles. By using the total useful energy rate method to study the power and the useful heat output in a steady-state-flow system had been investigated. The research includes endoreversible Otto cogeneration cycle, endoreversible Atkinson cogeneration cycle, and internal irreversible Joule-Brayton cogeneration cycle. If the total useful energy-rate is an objective function on optimization, the total useful energy rate of the cycle is maximized and the efficiency at maximum total useful energy rate is also analyzed.
Moreover, the effects of various cycle parameters (i.e., pressure-ratio parameter and user’s temperature ratio) on the maximum dimensionless total useful energy rate and the efficiency at maximum total useful energy rate have been assessed. Variations of dimensionless total useful energy rate on the heat efficiency have also been analyzed. In the internal irreversible Joule-Brayton cogeneration cycle, the effects of various irreversible situations on total useful energy rate of the cycle are discussed.
Hence, the application of the total useful energy rate method for researching cogeneration cycles can not only save the consumption of energy, but reduce the industrial cost by the relation of system parameters.
Ait-Ali,M.A., “Optimum Endoreversible Power Cycle with a Specified Temperature Range,” Journal of Applied Physics, Vol. 76, No. 6,pp. 3231- 3236, 1994.
Ait-Ali, M.A., “Maximum Power and Thermal Efficiency of an Irreversible Power Cycle,” Journal of Applied Physics, Vol. 78,No. 7,pp. 4314-4318,1995.
Andersen, B., Berry, R.S. and Rubin, M.H., “Availability for Finite-Time Processes-General Theory and a Model,” Journal of Physical Chemistry, Vol. 87,No. 15,pp. 2704-2713 ,1983.
Angulo-Brown, F., “An Ecological Optimization Criterion for Finite-Time
Heat Engines,” Journal of Applied Physics, Vol. 69,No. 11,pp. 7465-7469,
1991.
Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants,” International Journal of Heat and Mass Transfer, Vol. 31, No. 6, pp. 1211-1219 ,1983.
Bejan, A., “Power and Refrigeration Plants for Minimum Heat Exchanger Inventory,” ASME Journal of Energy Resources Technology, Vol. 115, No. 2,
pp. 148-150,1993.
Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants-II. The Optimal Allocation of Heat Exchange Equipment” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 433-444, 1995.
Bojic M., “Cogeneration of Power and Heat by Using an Endoreversible
Carnot Engine,” Journal of Energy Conversion Management, Vol. 38,No. 18,
pp. 1877-1880, 1997.
Cheng, C.Y., Chen, C.K., “ Efficiency optimizations of an irreversible Brayton heat-engine,” ASME Journal of Energy Resources Technology,
Vol. 120, No. 2,pp. 143-148, 1998.
Chen, J. ,“The Maximum Power Output and Maximum Efficiency of an Irreversible Carnot Heat Engine,” Journal of Physics D: Applied Physics,
Vol. 27,No. 6,pp. 1144- 1149,1994.
Chen, L., Sun, F., Wu, C., and Kiang, R.L., “ Theoretical Analysis of the Performance of a Regenerated Closed Brayton Cycle with Internal Irreversibilities,” Journal of Energy Conversion Management, Vol.18 ,No. 9,
pp. 871-877,1997.
Curzon, F.L. and Ahlburn , B. , “Efficiency of Carnot Engine at Maximum Power Output,” American Journal of Physics, Vol. 43,No. 1,pp. 22-44 ,1975.
De Vos, A., “Efficiency of Some Heat Engines at Maximum-Power Conditions,” American Journal of Physics, Vol. 53,No.6, pp. 570-573,1985.
El-Wakil, M.M. , Nuclear Power Engineering, pp. 162-165 , Mcgraw-Hill,
New York, 1962.
El-Wakil, M.M. , Nuclear Energy Conversion, pp. 31-35, International Textbook Company, Scranton, Pa,1971.
Gordon, J.M., “Generalized Power versus Efficiency Characteristics of Heat Engines: the Thermoelectric Generator as an Instructive Illustration,”
American Journal of Physics, Vol. 59,No. 6,pp. 551-555 ,1991.
Gordon, J.M. and Huleihil, M. , “General Performance Characteristics of Real Heat Engine,” Journal of Applied Physics, Vol. 72,No. 3,pp. 829-837,
1992.
Hao, H., and Zhang, G., “Maximum Useful Energy-rate Analysis of an
Endoreversible Joule–Brayton Cogeneration Cycle,” Journal of Applied Energy Vol. 84, No. 3,pp. 1092-1101, 2007.
Ibrahim, O.M. ,Klein, S.A. ,and Mitchell, J.W. , “Optimum Power Cycles for Specified Boundary Conditions,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 113,No. 4,pp. 514-521 ,1991.
Leff, H.S.,“ Thermal efficiency at maximum work-output: new results for old heat engines,” Journal of Applied Physics Vol. 55,No. 7,pp. 602-610, 1987.
Moukalled, F., Nuwayhid, R.Y. and Nouehed, N., “The Efficiency of Endoreversible Heat Engines with Heat Leak,” International Journal of Energy Research, Vol. 19,No. 5,pp. 377-389, 1995.
Novikov, Ι.I., “The Efficiency of Atomic Power Stations,” Journal of Nuclear Energy II ,Vol. 7, pp. 125-128 ,1958.
Rubin, M.H., Ondrechen, M.J. and Band, Y.B. ,“The Generalized Carnot Cycle a Working Fluid Operating in Finite Time between Finite Heat Sources and Sinks ,” Journal of Chemical Physics, Vol. 78,No. 7,pp. 4721-4727 ,1983.
Sahin, B., Kodal, A., Ekmecki, I.,and Yilmaz, T.,“ Exergy optimization for an endoreversible cogeneration cycle,” Journal of Energy,Vol.22,No.5,pp.551
-557, 1997.
Sahin, B. ,Kodal, A. and Yavuz, H., “Efficiency of a Joule-Brayton Engine at Maximum Power Density,” Journal of Physics D: Applied Physics, Vol. 28,
No. 7, pp. 1309-1313, 1995.
Wang, P.Y., and Hou, S.S., “Performance Analysis and Comparison of an Atkinson Cycle Coupled to Variable Temperature Heat Reservoirs under Maximum Power and Maximum Power Density Conditions,” Journal of Energy Conversion and Management, Vol. 46, No. 15-16, pp. 2637-
2655,2005.
Wu C., Chen L., and Sun, F. “ Performance of a Regenerative Brayton Heat-
Engine,” Journal of International of Energy ,Vol. 21 ,No. 2,pp. 71-76, 1996.
Wu, C. , and Kiang, R.L. , “Work and Power Optimization of a Finite-Time Brayton Cycle,” International Journal of Ambient Energy, Vol. 11,No. 3,pp.
129- 136, 1990.
Wu, C. ,and Kiang, R.L. , “Power Performance of a Nonisentropic Brayton Cycle,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 113,
No. 4 ,pp.501-504, 1991.
李魁鵬,“中間冷卻式冷凍循環之有限時間熱力分析,”國立成功大學機械工程研究所碩士論文,1995.
劉建志,“冷凍循環有限時間熱力分析,”國立成功大學機械工程研究所碩士論文,1994.
鄭慶陽,“有限時間熱力學在熱力循環上之應用,” 國立成功大學機械工程研究所博士論文,1996.