簡易檢索 / 詳目顯示

研究生: 楊爲凱
Yang, Wei-Kai
論文名稱: 應用晶格波茲曼法模擬樹脂滲透纖維之流動行為
Simulation of the resin infiltration in fiber bundles using the Lattice Boltzmann Method
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 晶格波茲曼法單組分偽勢模型單向自由表面法
外文關鍵詞: Lattice Boltzmann method, Shan-Chen single component multiphase model, single phase free surface model
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 樹脂轉注成型為一種常見的複合材料製造方法,其製程大致可分為
    關模、充模與開模等階段,充模階段為模具閉合後樹脂注入模具浸潤纖維並同時將空氣從排氣口排出的過程,而充模過程中樹脂浸潤纖維的流動行為為製作複材品質的重要因素。本文使用晶格波茲曼法搭配Shan-Chan提出的單組分偽勢模型與單向自由表面模型來模擬樹脂於模具內的流動情形,此方法相較於傳統計算流體力學方法的計算法則更為簡單與穩定。
    考慮到實際纖維束形狀與排列形式的多樣性,本文採用圓形與橢圓
    纖維束作為本文所探討的纖維束形狀,依纖維束排列型式與樹脂注入方
    向,將其分為六種常見模型。透過改變樹脂與纖維的接觸角大小、充模速度、纖維束間距與纖維間隙等參數,探討樹脂注入六種模型時樹脂的流動行為與氣泡生成的差異。
    依據各項參數的模擬比較結果,大致可提出以下結論,首先,本文所
    使用的模擬方法,可成功匹配實際環氧樹脂的表面張力等材料性質與模
    擬樹脂浸潤纖維時樹脂的流動行為,另外,透過改變單一參數,探討本文六種模型分別的氣泡生成情形。

    Resin Transfer Molding (RTM) is a method for manufacturing polymer composite. The RTM process involves the resin injection into a mold cavity to infiltrate the fibers while the air is discharged from the outlet. Since the flow behavior of the resin infiltration in fibers is the key factor affecting the quality of the fabricated composite. In this thesis, we applied the Lattice Boltzmann method with single-component pseudo-potential model and single-phase free surface model to simulate the flow of resin infiltration in and between fiber bundles.
    This method is simpler than the traditional computational fluid dynamics method in simulating the free surface flow with surface tension.
    Because of the diversity of the fiber bundle shape and arrangement, we chose the circular and elliptical shapes to model fiber bundles in the simulations in order to reduce the amount of calculation. According to the fiber bundle arrangement and resin flow direction, it is divided into six models. The flow behavior of the resin injection and the possibility of bubble formation among those models were investigated by changing the factors as the resin and fiber contact angle, injection speed, fiber bundle spacing, fiber bundle arrangement, and the gaps between fibers.
    This method used in this thesis successfully modeled the actual surface tension of epoxy resin, and simulated the flow behavior of the resin infiltration in fibers, which was also demonstrated to predict the possibility of air bubble formation in the fiber network during
    the filling process.

    中文摘要 ............ I ABSTRACT ............. II 誌謝 .............. XVI 目錄 ............. XVII 表目錄 ............. XX 圖目錄 ............ XXI 符號說明 ............ XXV 第一章 緒論 ........... 1 1-1 前言 ............. 1 1-2 研究動機與目的 ......... 4 1-3 研究方法及文獻回顧 ......... 4 1-3-1 樹脂轉注成型製造法 ........ 4 1-3-2 晶格波茲曼法 ......... 5 1-3-3 晶格波茲曼法邊界條件 ....... 6 1-3-4 晶格波茲曼兩相流 ......... 8 1-3-5 流場自由表面方法 ......... 9 1-4 本文架構 ........... 第二章 理論原理 ........... 14 XVIII 2-1 晶格波茲曼法理論 ......... 14 2-1-1 晶格氣體細胞自動機 ....... 14 2-1-2 晶格波茲曼法BGK 方程式無因次化 ..... 19 2-1-3 晶格波茲曼法D2Q9 模型與巨觀方程式 ..... 20 2-2 單組分偽勢模型 ......... 29 2-3 流場自由表面方法簡介 ......... 34 2-3-1 界面移動量計算 ......... 35 2-3-2 重建分佈函數 ......... 36 2-3-3 重新標示格點形式 ......... 36 2-3-4 自由表面法固體邊界條件 ....... 37 2-3-5 未知分量指標算法 ......... 38 第三章 邊界處理與程式驗證 ......... 48 3-1 邊界處理 ........... 48 3-1-1 週期邊界 ......... 49 3-1-2 反彈邊界 ......... 49 3-1-3 速度與壓力邊界 ......... 50 3-2 程式驗證 ........... 53 3-2-1 表面張力 ......... 53 3-2-2 接觸角 ........... 54 XIX 第四章 數值模擬與結果討論 ......... 61 4-1 模型描述 ........... 61 4-2 材料設定與因次轉換 ......... 67 4-2-1 材料設定 ......... 67 4-2-2 因次轉換 ......... 68 4-3 程式撰寫流程 ........... 72 4-4 模擬結果 ........... 73 4-4-1 作用力加入與否比較 ....... 73 4-4-2 不同接觸角比較 ......... 75 4-4-3 不同充模速度比較 ......... 77 4-4-4 不同纖維束形狀與排列比較 ....... 82 4-4-5 不同纖維間隙與纖維束間距之氣泡生成情形 ... 84 第五章 結論 ........... 91 參考文獻 ............. 94

    [1] J. Williams, C. Morris, and B. Ennis, "Liquid flow through aligned fiber
    beds," Polymer Engineering & Science, vol. 14, pp. 413-419, 1974.
    [2] R. S. Parnas and F. Phelan, "The effect of heterogeneous porous media
    on mold filling in resin transfer molding," Sampe Quarterly, vol. 22, pp.
    53-60, 1991.
    [3] J. Molnar, L. Trevino, and L. Lee, "Liquid flow in molds with prelocated
    fiber mats," Polymer Composites, vol. 10, pp. 414-423, 1989.
    [4] N. Patel, V. Rohatgi, and L. J. Lee, "Micro scale flow behavior and void
    formation mechanism during impregnation through a unidirectional
    stitched fiberglass mat," Polymer Engineering & Science, vol. 35, pp.
    837-851, 1995.
    [5] B. H. U. Frisch, and Y. Pomeau, "Lattice-gas cellular automata and
    lattice Boltzmann models," Physical Review, vol. 56, pp. 1505-1508,
    1986.
    [6] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond:
    Oxford university press, 2001.
    [7] G. R. McNamara and G. Zanetti, "Use of the Boltzmann equation to
    simulate lattice gas automata," Phys Rev Lett, vol. 61, pp. 2332-2335,
    Nov 14 1988.
    [8] F. Higuera and J. Jimenez, "Boltzmann approach to lattice gas
    simulations," EPL (Europhysics Letters), vol. 9, p. 663, 1989.
    [9] F. Higuera, S. Succi, and R. Benzi, "Lattice gas dynamics with enhanced
    collisions," EPL (Europhysics Letters), vol. 9, p. 345, 1989.
    [10] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes
    equations using a lattice-gas Boltzmann method," Physical Review A, vol.
    45, pp. R5339-R5342, 1992.
    [11] Y. Qian, D. d'Humières, and P. Lallemand, "Lattice BGK models for
    Navier-Stokes equation," EPL (Europhysics Letters), vol. 17, p. 479,
    1992.
    [12] P. L. Bhatnagar, E. P. Gross, and M. Krook, "A Model for Collision
    Processes in Gases. I. Small Amplitude Processes in Charged and
    95
    Neutral One-Component Systems," Physical Review, vol. 94, pp. 511-
    525, 1954.
    [13] D. P. Ziegler, "boundary conditions for lattice Boltzmann simulation," j.
    stat. phys, vol. 71, pp. 1171-1177, 1993.
    [14] M. Y. Takaji Inamuro, and Fumimaru Ogino "a non-slip boundary
    condition for lattice boltzmann simulations," physics of fluids, vol. 7, pp.
    2928-2930, 1995.
    [15] S. Chen, D. Martinez, and R. Mei, "On boundary conditions in lattice
    Boltzmann methods," Physics of fluids, vol. 8, pp. 2527-2536, 1996.
    [16] Q. Z. a. X. He, "On pressure and velocity boundary conditions for the
    lattice Boltzmann BGK model," Phys. Fluids, vol. 9, pp. 1591-1598,
    1997.
    [17] A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, "Lattice
    Boltzmann model of immiscible fluids," Physical Review A, vol. 43, pp.
    4320-4327, 1991.
    [18] D. H. R. a. J. M. Keller, "immiscible cellular automaton fluids," Journal
    of Statistical Physics, vol. 52, pp. 1119-1127, 1988.
    [19] X. Shan and H. Chen, "Lattice Boltzmann model for simulating flows
    with multiple phases and components," Physical Review E, vol. 47, pp.
    1815-1819, 1993.
    [20] M. R. Swift, W. R. Osborn, and J. M. Yeomans, "Lattice Boltzmann
    simulation of nonideal fluids," Phys Rev Lett, vol. 75, pp. 830-833, Jul
    31 1995.
    [21] L.-S. Luo, "unified theory of lattice boltzmann models for nonideal
    gases," Physical Review, vol. 81, pp. 1618-1621, 1998.
    [22] X. S. X. He, G.D Doolen, "Discrete Boltzmann equation model for non
    ideal gases," physical Review, vol. 57, pp. R13-R16, 1998.
    [23] C. W. H. A. B. D. Nichols, "Volume of fluid (VOF) method for the
    dynamics of free boundaries.pdf," Computational Physics, vol. 39, pp.
    201-225, 1981.
    [24] P. S. M. Sussman, S. Osher, "a level set approach for computing solutions
    to incompressible two-phase flow," Computational physics, vol. 114, pp.
    146-159, 1994.
    [25] S. K. Ginzburg I, "Lattice Boltzmann model for Free-Surface flow and
    its application to filling process in casting," Computational physics, pp.
    61-99, 2003.
    [26] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde, "Lattice
    Boltzmann Model for Free Surface Flow for Modeling Foaming,"
    Journal of Statistical Physics, vol. 121, pp. 179-196, 2005.
    [27] N. Thürey, Rüde U, Körner C., "Interactive Free Surface Fluids with the
    Lattice Boltzmann Method," University of Erlangen-Nuremberg,
    Germany2005.
    [28] Y.-S. H. Shing-Cheng Chang, amd Chieh-Li Chen "Lattice Boltzmann
    simulation of fluid flows with fractal geometry: An unknown-index
    algorithm," Chinese Society of Mechanical Engineers, vol. 32, pp. 523-
    531, 2011.
    [29] J. Hardy, Y. Pomeau, and O. de Pazzis, "Time Evolution of a Two-
    Dimensional Classical Lattice System," Physical Review Letters, vol. 31,
    pp. 276-279, 1973.
    [30] U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the
    Navier-Stokes equation," Phys Rev Lett, vol. 56, pp. 1505-1508, Apr 07
    1986.
    [31] X. Shan and H. Chen, "Simulation of nonideal gases and liquid-gas phase
    transitions by the lattice Boltzmann equation," Physical Review E, vol.
    49, pp. 2941-2948, 1994.
    [32] S. X. a. D. G, "Multi-component lattice-Boltzmann model with
    interparticle interaction," Journal of Statistical Physics, vol. 81, pp. 379-
    393, 1995.
    [33] N. S. M. a. H. Chen, "Simulation of multicomponent fluids in complex
    three-dimensional geometries by the lattice Boltzmann method,"
    Physical Review, vol. 53, pp. 743-750, 1996.
    [34] L. Chen, Q. Kang, Y. Mu, Y.-L. He, and W.-Q. Tao, "A critical review of
    the pseudopotential multiphase lattice Boltzmann model: Methods and
    applications," International Journal of Heat and Mass Transfer, vol. 76,
    pp. 210-236, 2014.
    [35] J. M.C. Sukop and D.T. Thorne, Lattice Boltzmann Modeling. Germany:
    97
    Springer-Verlag, 2005.
    [36] X. Q. Xing, D. L. Butler, and C. Yang, "Lattice Boltzmann-based singlephase
    method for free surface tracking of droplet motions," International
    Journal for Numerical Methods in Fluids, vol. 53, pp. 333-351, 2006.
    [37] R.-l. Zhang, Q.-f. Di, X.-l. Wang, and C.-y. Gu, "Numerical study of wall
    wettabilities and topography on drag reduction effect in micro-channel
    flow by Lattice Boltzmann Method," Journal of Hydrodynamics, Ser. B,
    vol. 22, pp. 366-372, 2010.
    [38] M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, "Infrared image guide
    with bundled As–S glass fibers," Applied optics, vol. 24, pp. 2304-2308,
    1985.
    [39] 嚴培文, "真空輔助樹脂轉注成形法製造複合材料機翼結構肋之技
    術與電腦模擬分析," 碩士, 紡織工程研究所, 逢甲大學, 台中市,
    2007.
    [40] T. Krüger, "Unit conversion in LBM," Germany.2011.
    [41] W. B. Young, "Three ‐ dimensional nonisothermal mold filling
    simulations in resin transfer molding," Polymer Composites, vol. 15, pp.
    118-127, 1994.
    [42] X. BAO, T. j. LU, R. WEI, Y. ZHANG, H. b. LI, H. CHEN, et al.,
    "Application of Surface Contact Angle and Surface Tension
    Measurements in the Identification of Gem Materials," Rock and
    Mineral Analysis, vol. 33, pp. 681-689, 2014.
    [43] N. Thürey and U. Rüde, "Stable free surface flows with the lattice
    Boltzmann method on adaptively coarsened grids," Computing and
    Visualization in Science, vol. 12, pp. 247-263, 2008.
    [44] M. Schreiber, P. Neumann, S. Zimmer, and H.-J. Bungartz, "Free-
    Surface Lattice-Boltzmann Simulation on Many-Core Architectures,"
    Procedia Computer Science, vol. 4, pp. 984-993, 2011.
    [45] 顏子翔, "應用晶格波茲曼法與場協同理論於不同阻礙物之背向階
    梯管道熱流分析," 博士, 機械工程學系, 國立成功大學, 台南市,
    2006.
    [46] 李宜謙, "應用晶格波茲曼法模擬三維複雜幾何形狀管道之流動問
    題," 碩士, 機械工程學系, 國立成功大學, 台南市, 2012.
    [47] 林建城, "應用氣袋於可變形轉注成形法之研究," 碩士, 航空太空工
    程學系, 國立成功大學, 台南市, 1996.
    [48] 王成源, "RTM 製程模擬視窗程式設計," 碩士, 航空太空工程學系,
    國立成功大學, 台南市, 2000.
    [49] Shing-ChengChang, Lectures for the Lattice Boltzmann Method,
    Department of Mechanical Engineering, NCKU, Taiwan, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE