簡易檢索 / 詳目顯示

研究生: 周晉
chou, Chin
論文名稱: 極音速乘波體飛行彈道中不同曲率半徑橢圓鼻錐之熱負載研究探討
Thermal Loading Investigation of Elliptic Noses with Different Radius of Curvatures during Hypersonic Waverider Flight Trajectory
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 217
中文關鍵詞: 極音速經驗公式修正熱通量預測熱燒蝕
外文關鍵詞: Hypersonic, Modified Empirical Correlation, Heat Flux Prediction, Ablation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract iii 致謝 xiv 目錄 xv 圖目錄 xix 表目錄 xxix 符號索引 xxx 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 3 1-2.1 極音速飛彈 3 1-2.2 極音速飛彈飛行軌跡 5 1-2.3 熱防護材料 8 1-2.4極音速流場耦合結構熱傳 12 1-2.5 熱通量經驗公式回顧 22 1-3 研究動機 25 第二章 熱通量公式與極音速流固熱耦合模型之基礎理論 28 2-1 熱通量經驗公式的理論與發展 28 2-2 極音速流場之流固耦合共軛熱傳模型建立 30 2-2.1大氣密度模型 32 2-2.2 連續體之統御方程式 33 2-2.3 化學非平衡模型 35 2-2.4物質傳輸方程式 41 2-2.5氣體比熱模型 43 2-2.6 SST k-ω紊流模型 44 2-2.7 近壁面模型 47 2-2.8碳基材料燒蝕機制 50 2-2.9流場對固體表面之熱傳 55 2-2.10時間離散之分析方式 56 2-3數值驗證 61 2-3.1 應用CFD重現極音速飛行熱負載現象 61 2-3.1.1模型建立方式 62 2-3.1.2模型驗證結果 64 2-3.2 碳基材料燒蝕模型 67 2-3.2.1模型建立方式 68 2-3.2.2模型驗證結果 72 第三章 研究方法 78 3-1 飛行外型與軌跡模擬方法探討 78 3.1-1 極音速飛行載具外型 78 3.1-2 飛行軌跡分析 80 3-1.3軌跡時間離散化 86 3-1.4極音速載具數值模型結果 89 3-2 CFD與經驗公式之差異 93 第四章 結果與討論 95 4-1 極音速載具熱負載結果分析 95 4.1-1極音速流場結果分析 95 4.1-2時間離散方法結果分析 102 4.1-3熱通量與溫度結果分析 106 4.1-4表面燒蝕反應結果分析 111 4-2 不同外形理論與模擬比較 114 4.2-1不同外形之比較結果分析 114 4.2-2不同外形與理論之比較結果分析 120 4-3 應用自由流參數預測壁面熱通量之探討 131 4.3-1停滯點熱通量預測結果分析 131 4.3-2壁面熱通量預測結果分析 138 第五章 結論與未來建議 145 參考文獻 148 附錄1-公式推導過程 155 圖附錄 171 表附錄 179

    【1】 S. Y. Chen, “Modeling of Material-Environment Interactions for Hypersonic Thermal Protection Systems,ˮ Ph.D. dissertation, Aerospace Engineering, University of Michigan, Michigan, United States, 2020.
    【2】 G. Li, H. Zhang, G. Tang, “Maneuver characteristics analysis for hypersonic glide vehicles,ˮ Aerospace Science and Technology, 2015.
    【3】 D. Wright & C. L. Tracy, “Hypersonic Cruise Missiles,ˮ Science & Global Security, 2024.
    【4】 R. L. Potts, “Application of Integral Methods to Ablation Charring Erosion, A Review,” Journal of Spacecraft and Rockets, Vol. 32, No. 2, March–April 1995, pp. 200–209.
    【5】 Y. Liu, B. Chen, Y. Li, and H. Shen, “Overview of control-centric integrated design for hypersonic vehicles,ˮ Astrodynamics Vol. 2, No. 4, 307324, 2018.
    【6】 P. Zhao, W. Chen, W. Yu, “Analytical solutions for longitudinal-plane motion of hypersonic skip-glide trajectory,ˮ Nonlinear Dynamics, pp 1947–1969, 2019.
    【7】 P. Dechaumphai, E. A. Thornton and A. R. Wieting, “Flow-Thermal-Structural Study of Aerodynamically Heated Leading Edges,” Journal of Spacecraft and Rockets, Vol. 26, No. 4, July–August 1989, pp. 201–209.
    【8】 Wieting, A. R., “Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge,” NASA TM-100484, May 1987.
    【9】 S. Zhang, F. Chen and H. Liu, “Time-Adaptive, Loosely Coupled Strategy for Conjugate Heat Transfer Problems in Hypersonic Flows,ˮ Journal of Thermophysics and Heat Transfer, Vol. 28, No. 4, October–December 2014, pp. 635–646.
    【10】 B. Hassan, D. W. Kuntz and D. L. Potter, “Coupled Fluid/Thermal Prediction of Ablating Hypersonic Vehicles,” AIAA Paper 98-0168, January 1998.
    【11】 Hirschfelder, Joseph O., Curtiss, Charles F., and Bird, R. Byron, “Molecular Theory of Gases and Liquids,” J. Wiley & Sons, Inc., c.1954.
    【12】 Nathaniel B. Cohen , “Correlation Formulas and Tables of Density and Some Transport Properties of Equilibrium Dissociating Air for Use in Solutions of the Boundary-layer Equations,” National Aeronautics and Space Administration, 1960.
    【13】 Michael E. Tauber, “A review of high-speed convective heat transfer computation methods,” NASA Technical Paper,1989.
    【14】 Zhang Y.L , “Hypersonic weapons: a new hotspot in US-Russia military competition,” Social Sciences I, March 2020, pp28-30.
    【15】 K. Ana, G. Y. Zhen, P. X. Xiao , W. Huang, “A framework of trajectory design and optimization for the hypersonic gliding vehicle,” Aerospace Science and Technology, 2020.
    【16】 Moss, J. N., and Bird, G. A., “Direct Simulation of Transitional Flow for Hypersonic Reentry Conditions,” AIAA Paper 84-0223, January 1984.
    【17】 T. Rivell, “Notes on Earth Atmosphere Entry for Mars Sample Return Missions,ˮ NASA TP-2006-213486, September 2006.
    【18】 "The Layered Atmosphere",[Online] Available: http://www.physicalgeography.net/fundamentals/7b.html.
    【19】 R. N. Gupta, J. M. Yos, and R. A. Thompson, “A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K,” NASA-RP-1232, 1990, pp. 45–46.
    【20】 G. A. Tirsky, “Up-To-Date Gasdynamic Models of Hypersonic Aerodynamics and Heat Transfer with Real Gas Properties,” Annual Review of Fluid Mechanics, Vol. 25, 1993
    【21】 R. A. Svehla, “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures,” NASA-TR-132, 1962.
    【22】 M. Capitelli, G. Colonna, D. Giordano, L. Marraffa, A. Casavola, P. Minelli, D. Pagano, L. D. Pietanza and F. Taccogna, “Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50k to 50000K,” ESA STR-246, October 2005.
    【23】 “Law of the Wall.”[Online] Available: https://en.wikipedia.org/wiki/Law_of_the_wall#/media/File:Law_of_the_wall_(English).svg
    【24】 H. G. Maahs, “Carbon-Carbon : Emerging Materials for Hypersonic Flight,” NASA-TM-103472, January 1989.
    【25】 Y.-K. Chen and F. S. Milos, “Navier–Stokes Solutions with Finite Rate Ablation for Planetary Mission Earth Reentries,” Journal of Spacecraft and Rockets, Vol. 42, No. 6, November–December 2005, pp. 961–970.
    【26】 C. Park and H.-K. Ahn, “Stagnation-Point Heat Transfer Rates for Pioneer-Venus Probes,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, January-March 1999, pp. 33–41.
    【27】 J. Abrahamson, “Graphite Sublimation Temperatures, Carbon Arcs and Crystallite Erosion,” Carbon, Vol. 12, No. 2, 1974, pp. 111–141.
    【28】 G. Liu, “High Temperature Oxidation of Graphite by a Dissociated Oxygen Beam,” Ph.D. Dissertation, Massachusetts Inst. of Technology, Cambridge, MA, 1973.
    【29】 M. MacLean, J. Marschall and D. M. Driver, “Finite-Rate Surface Chemistry Model, II: Coupling to Viscous Navier-Stokes Code,ˮ AIAA Paper 2011-3784, June 2011.
    【30】 K. Gustafsson, M. Lundh, and G. Söderlind, “A PI Stepsize Control for the Numerical Solution of Ordinary Differential Equations,” BIT Numerical Mathematics, Vol. 28, No. 2, 1988, pp. 270–287.
    【31】 K. Gustafsson, “Control Theoretic Techniques for Stepsize Selection inExplicit Runge-Kutta Methods,” ACM Transactions on Mathematical Software, Vol. 17, No. 4, December 1991, pp. 533–554.
    【32】 K. Gustafsson, “Control Theoretic Techniques for Stepsize Selection in Implicit Runge-Kutta Methods,” ACM Transactions on Mathematical Software, Vol. 20, No. 4, December 1994, pp. 496–517.
    【33】 A. M. P. Valli, G. F. Carey, and A. L. G. A. Coutinho, “Control Strategies for Timestep Selection in Finite Element Simulation of Incompressible Flows and Coupled Reaction-Convection-Diffusion Processes,” International Journal for Numerical Methods in Fluids, Vol. 47, No. 3, 2005, pp. 201–231.
    【34】 Doyle Knighta, Olivier Chazot, Joanna Austin, “Assessment of predictive capabilities for aerodynamic heating in hypersonic flow,” Progress in Aerospace Sciences, 2017, pp.39-53.
    【35】 Y.-K. Chen, F. S. Milos, D. C. Reda and D. A. Stewart, “Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions,” AIAA Paper 2003-4042, June 2003.
    【36】 M. W. Winter, G. Raiche and D. K. Prabhu, “Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility,” ARC-E-DAA-TN6242, October 2012.
    【37】 R. E. Talyor and H. Groot, “Thermophysical Properties of Poco Graphite,” AFOSR-TR-78-1375, July 1978, pp. 21–22.
    【38】 Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, “Thermal Conductivity Nonmetallic Solids,” Thermophysical Properties of Matter, Vol. 2, 1970, pp. 21–23.
    【39】 D. W. HOLDER and A. CHINNECK , The Flow Past Elliptic-nosed Cylinders and Bodies of Revolution in Supersonic Air Streams,The Aeronautical Quarterly, February 1954.
    【40】 E. B. Montgomery, T. Yoshihara,” Speeding Toward Instability? Hypersonic Weapons and the Risks of Nuclear Use,” Center for Strategic and Budgetary Assessments,2023.
    【41】 S. Meng and Y. Zhou, W. Xie, F. Yi and S. Du, “Multiphysics Coupled Fluid/Thermal/Ablation Simulation of Carbon/Carbon Composites,” Journal of Spacecraft and Rockets, Vol. 53, No. 5, September–October 2016, pp. 930–935.
    【42】 J. D. Anderson, Jr., “Fundamentals of Aerodynamics,” McGraw-Hill, New York, 2016.
    【43】 “Oblique Shock.”[Online] Available: https://en.wikipedia.org/wiki/Oblique_shock
    【44】 J. M. Eggleston and J. W. Young, “Trajectory Control for Vehicles Entering the Earth's Atmosphere at Small Flight-Path Angles,” NASA MEMO 1-19-59L, February 1959.
    【45】 Eggers, R. Jr., Allen, H. Julian, and Neice, W. G., “ A Study of the Boundary-Layer Characteristics and the Heat Transfer to Blunt Bodies Flying at Supersonic and Hypersonic Speeds,” NACA TN 4279,1958.
    【46】 Wood, N. B., “Hypersonic Laminar Heat Transfer and Boundary Layer Transition on Blunted Cones,” The Aeronautical Quarterly, Vol. 19, Issue 4, 1968, pp. 353–372.
    【47】 Zhang, X., Wang, J., Liu, Z., & Chen, Y., “Numerical Analysis of Aerodynamic Thermal Properties of Hypersonic Blunt-Nosed Body with Angles of Fire,” Energies, Vol. 16, No. 4, 2023.

    無法下載圖示 校內:2030-08-17公開
    校外:2030-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE