| 研究生: |
方銘鍵 Fang, Minf-Chien |
|---|---|
| 論文名稱: |
開發用於臨床量測新生兒膽紅素濃度之手持漫反射光譜系統 Development of handheld diffuse reflectance spectroscopy system for clinical measurement of neonatal bilirubin concentration |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 漫反射光譜法 、膽紅素 、新生兒黃疸 、皮膚光學參數 、收散射係數 、手持式系統 、微型光譜儀 |
| 外文關鍵詞: | Diffuse reflectance spectroscopy, bilirubin concentration, neonatal jaundice, skin optical properties miniature spectrometer handheld instrument |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用非侵入式量測人體皮膚膽紅素值廣泛用於篩選新生兒黃疸,本研究使用擴散傳播理論作為光子傳播理論的正向模型,利用線性Levenberg-Marquardt最小平方法作為反向模型計算出吸收及散射係數,我們使用漫反射光譜學(Diffuse Reflectance Spectroscopy,DRS)系統將量測到的漫反射光譜經由上述的理論模型計算轉換為組織的吸收係數(absorption coefficient,μ_a)與散射係數(scattering coefficient,μ_s),再將吸收係數進行chromophore fitting,計算出新生兒皮膚中的膽紅素數值。
因抽血容易造成新生兒感染風險,且避免經過皮膚量測上易受膚色影響的問題,為了能即時得知嬰兒膽紅素數值,因此輕型化方便攜帶極為重要,本研究使用微型光譜儀(C12880MA)搭配400-600nm的LED光源,搭配DRS系統設計出一套非侵入手持式量測儀器,我們量測並計算得到新生兒皮膚的光學參數,在我們分析的光譜中,皮膚組織的主要色團為氧合血紅素(HbO_2)、血紅素(Hb)、直接膽紅素(Direct Bilirubin)、間接膽紅素(Indirect Bilirubin)與黑色素(Melanin),我們能精準地量化出黑色素在光譜中的貢獻來排除經過皮膚量測易受膚色所干擾的影響。
本研究主要分為兩個部分,第一部分為利用仿人體假體來驗證手持式系統量測的可行性並與本實驗室精密完整量測系統做比較,結果顯示,即使考慮到強烈的黑色素干擾,也可以準確量化膽紅素濃度。第二部分為收取臨床上新生兒的漫反射光譜,主要量測新生兒身體上的二個部位(胸腔及腳底板),在臨床研究中顯示,在不同部位測量的經皮膽紅素濃度與總血清膽紅素有顯著相關性,無論個體差異性,我們的手持式光學系統都是穩健可靠的。
In this study, we uses a miniature spectrometer (C12880MA), a 400-600nm LED light source and spatially resolved diffuse reflectance spectroscopy (SRDRS) to development a noninvasive handheld measuring instrument with the novel spectral analysis algorithm in order to measure and calculate the optical parameters of the neonatal skin. In the spectrum we analyzed, the main chromophores in human skin are oxyhemoglobin, hemoglobin, bilirubin and melanin. By taking melanin into consideration, This study will be conducted in two section of analysis. The first part is using the gelatin phantoms to verify the feasibility of the handheld system and compare it with the laboratory's complete measurement system. The results show that the bilirubin concentration can be accurately quantified even considering melanin interference. The second part, we measured 19 newborn neonates diffuse reflectance spectra including their sternum and the foots, and compare with total serum bilirubin (TSB) from blood tests.In clinical research shows that the concentration of handheld instrument measured at different sites was significantly correlated with total serum bilirubin,We measured and TSB values in both positions: sternum(r = 0.89) and foots(r = 0.79).So our handheld optical systems are robust and reliable
Uncategorized References
1.Bhutani, V.K., Zipursky, A.,Blencowe, H.,Khanna, R.,Sgro, M.,Ebbesen, F.,Bell, J.,Mori, R.,Slusher, T. M.,Fahmy, N.,Paul, V. K.,Du, L..Okolo, A. A.,de Almeida, M. F.,Olusanya, B. O.,Kumar, P.,Cousens, S.,Lawn, J. E., Neonatal hyperbilirubinemia and Rhesus disease of the newborn: incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res, 2013. 74 Suppl 1: p. 86-100.
2.Aman, A., Ul Qader, S. A.,Bano, S., Estimation of total and direct serum bilirubin using modified micro assay method. Ital J Biochem, 2007. 56(2): p. 171-5.
3.Tseng, S.H., Hsu, C. K.,Yu-Yun Lee, J.,Tzeng, S. Y.,Chen, W. R.,Liaw, Y. K., Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study. J Biomed Opt, 2012. 17(7): p. 077005.
4.Lee, J.Y., Thawani, J. P.Pierce, J.,Zeh, R.,Martinez-Lage, M.,Chanin, M.,Venegas, O.,Nims, S.,Learned, K.,Keating, J.,Singhal, S., Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery, 2016. 79(6): p. 856-871.
5.Doornbos, R.M., Lang, R.,Aalders, M. C.,Cross, F. W.,Sterenborg, H. J., The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol, 1999. 44(4): p. 967-81.
6.Tseng, S.H., Grant, A.,Durkin, A. J., In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy. J Biomed Opt, 2008. 13(1): p. 014016.
7.Matcher, S.J., Cope, M.,Delpy, D. T., In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl Opt, 1997. 36(1): p. 386-96.
8.Farrell, T.J., Patterson, M. S.,Wilson, B., A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med Phys, 1992. 19(4): p. 879-88.
9.Tseng, S.H., Hayakawa, C.,Spanier, J.,Durkin, A. J., Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations. J Biomed Opt, 2009. 14(5): p. 054043.
10.Tuan H Pham, O.C., Joshua B Fishkin, Eric Anderson, Bruce J Tromberg., Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Review of Scientific Instruments, 2000: p. 71(6):2500–2513,.
11.Lee, M.W., Hung, C. H.,Liao, J. L.,Cheng, N. Y.,Hou, M. F.,Tseng, S. H., A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery. Biomed Opt Express, 2014. 5(10): p. 3628-39.
12.Setia, S., Villaveces, A.,Dhillon, P.,Mueller, B. A., Neonatal jaundice in Asian, white, and mixed-race infants. Arch Pediatr Adolesc Med, 2002. 156(3): p. 276-9.
13.Shah, V.S., Taddio, A.,Bennett, S.,Speidel, B. D., Neonatal pain response to heel stick vs venepuncture for routine blood sampling. Arch Dis Child Fetal Neonatal Ed, 1997. 77(2): p. F143-4.
14.el-Beshbishi, S.N.S., K. E.Mohammad, A. A.Petersen, J. R., Hyperbilirubinemia and transcutaneous bilirubinometry. Clin Chem, 2009. 55(7): p. 1280-7.
15.Polley, N., Saha, S.,Singh, S.,Adhikari, A.,Das, S.,Choudhury, B. R.,Pal, S. K., Development and optimization of a noncontact optical device for online monitoring of jaundice in human subjects. J Biomed Opt, 2015. 20(6): p. 067001.
16.Mussavi, M., Niknafs, P.,Bijari, B., Determining the correlation and accuracy of three methods of measuring neonatal bilirubin concentration. Iran J Pediatr, 2013. 23(3): p. 333-9.
17.Krishnan, P.M.V.a.L., “Does color really matter? Reliability of transcutaneous bilirubinometry in different skin-colored babies,”. Indian J. Paediatr. Dermatol, 2018.
18.B. O. Olusanya, D.O.I., A. A. Emokpae, “Differences between transcutaneous and serum bilirubin measurements in black African neonates,” Pediatr. 138, 2016.
19.Randeberg, L.L., Roll, E. B.,Nilsen, L. T.,Christensen, T.,Svaasand, L. O., In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr, 2005. 94(1): p. 65-71.
20.K. Jangaard, H.C., R. Goldbloom, Estimation of bilirubin using BiliChek™, a transcutaneous bilirubin measurement device: effects of gestational age and use of phototherapy. Paediatr. Child Health 11, 2006: p. 79-83.
21.Zhang, Z., Maddukuri, G.,Jaipaul, N.,Cai, C. X., Role of renal replacement therapy in patients with type 1 hepatorenal syndrome receiving combination treatment of vasoconstrictor plus albumin. J Crit Care, 2015. 30(5): p. 969-74.
22.Matoori, S., Froehlich, J. M.,Breitenstein, S.,Pozdniakova, V.,Reischauer, C.,Kolokythas, O.,Koh, D. M.,Gutzeit, A., Serum albumin, total bilirubin, and patient age are independent confounders of hepatobiliary-phase gadoxetate parenchymal liver enhancement. Eur Radiol, 2019.
23.Chou, S.C., Palmer, R. H.,Ezhuthachan, S.,Newman, C.,Pradell-Boyd, B.,Maisels, M. J.,Testa, M. A., Management of hyperbilirubinemia in newborns: measuring performance by using a benchmarking model. Pediatrics, 2003. 112(6 Pt 1): p. 1264-73.
24.Purcell, N., Beeby, P. J., The influence of skin temperature and skin perfusion on the cephalocaudal progression of jaundice in newborns. J Paediatr Child Health, 2009. 45(10): p. 582-6.
25.Kienle, A., Patterson, M. S.,Dognitz, N.,Bays, R.,Wagninures, G.,van den Bergh, H., Noninvasive determination of the optical properties of two-layered turbid media. Appl Opt, 1998. 37(4): p. 779-91.
26.Tseng, S.H., Hayakawa, C.,Tromberg, B. J.,Spanier, J.,Durkin, A. J., Quantitative spectroscopy of superficial turbid media. Opt Lett, 2005. 30(23): p. 3165-7.
27.Tseng, S.H., Bargo, P.,Durkin, A..Kollias, N., Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express, 2009. 17(17): p. 14599-617.
28.Bydlon, T.M., Nachabe, R.,Ramanujam, N.,Sterenborg, H. J.,Hendriks, B. H., Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. J Biophotonics, 2015. 8(1-2): p. 9-24.
29.Blauer, G., King, T. E., Interactions of bilirubin with bovine serum albumin in aqueous solution. J Biol Chem, 1970. 245(2): p. 372-81.
30.Lin, Y.-L., Noninvasive optical measurement system with novel spectral analysis algorithm for neonatal skin bilirubin concentration determination. 2018.
31.Onks, D., Silverman, L.,Robertson, A., Effect of melanin, oxyhemoglobin and bilirubin on transcutaneous bilirubinometry. Acta Paediatr, 1993. 82(1): p. 19-21.
32.Nishidate, I., Aizu, Y.,Mishina, H., Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation. J Biomed Opt, 2004. 9(4): p. 700-10.
33.Rolf B. Saager, C.K., Kendrew Au, Kelly Sry,Frederick Ayers, Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging
SPIE BiOS, 2010.
34.Chardon, A., Cretois, I.,Hourseau, C., Skin colour typology and suntanning pathways. Int J Cosmet Sci, 1991. 13(4): p. 191-208.
35.Zonios, G., Bykowski, J.,Kollias, N., Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol, 2001. 117(6): p. 1452-7.
36.Tzeng, S.-Y., Using Diffuse Reflectance Spectroscopy to Evaluate Skin Feature Parameters. 2017.