| 研究生: |
戴浩翔 Dai, Hao-Xiang |
|---|---|
| 論文名稱: |
以電池模型陣列放置於矩形空腔中分析熱傳及對流特性 Analysis of Heat Transfer and Convective Characteristics in a Rectangular Cavity with an Array of Battery Models |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 計算流體力學 、逆向熱傳導 、自然對流 、強制對流 、空腔 |
| 外文關鍵詞: | Computational Fluid Dynamics, Inverse Heat Conduction, Natural Convection, Forced Convection, Cavity |
| 相關次數: | 點閱:110 下載:42 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以特斯拉電動車18650電池陣列作為原型,透過簡化電池發熱特性,研究其在具有不同散熱條件之空腔中,透過實際物理模型進行熱傳及對流實驗,以此結合逆向熱傳導方法,並運用計算流體力學之計算結果,比較經驗公式以觀察不同紊流模型造成模擬結果之差異,選出適合用於計算之紊流模型,並在計算後彙整結果,結合後處理使流場與溫度場可視化,以此觀察不同條件下帶給電池組熱傳特性影響及空腔中對流方式變化,找尋出適合之電池模型散熱方式。
比對了實驗數據及數值分析之結果,Zero-eq在本模型中具有較優良之計算能力,其在自然對流時選定模型時與經驗公式所計算得到之熱傳導係數h比較之最大誤差僅為6%,在自然對流時具有開口之空腔相對無開口之空腔,空氣溫度都能有所降低,而電池組具有最佳散熱性能為側邊具有上側及下側開口之空腔及頂部開放之空腔,而強制對流雖無經驗公式可做比較,但相較於其他紊流模型具有較好的收斂性及節省30%計算時間,在強制對流中,任一組之散熱性能皆優於於自然對流之組別,其單一溫度最高可達17K之溫差,而在強制對流之組別中,不同開口位置會改變場域中之流道,影響其不同位置電池之散熱能力,其中以側板具有上方及下方開口之組別電池組整體溫度較低,較為適合電池組之散熱。
By comparing the experimental data with the numerical analysis results, the Zero-eq model exhibits superior computational capabilities in this model. The maximum discrepancy in the heat transfer coefficient (h) calculated by the Zero-eq model and the empirical formula for natural convection is only 6%. In natural convection, the presence of openings in the cavity leads to a decrease in air temperature. The cavity configuration with side openings at the upper and lower parts and top open exhibits the best heat dissipation performance for the battery pack. Although there are no empirical formulas for comparison in forced convection, the Zero-eq model demonstrates better convergence and saves 30% of computation time compared to other turbulence models. In forced convection, all groups exhibit better heat dissipation performance than the natural convection group, with a maximum temperature difference of 17K. Different opening positions in the forced convection group alter the flow channels in the domain, affecting the heat dissipation capabilities of batteries at different locations. The group with side openings at the upper and lower parts shows lower overall battery temperatures and is more suitable for battery cooling.
Keywords: Computational Fluid Dynamics, Inverse Heat Conduction, Natural
1. Bouckaert, S., Pales, A.F., McGlade, C., Remme, U., Wanner, B., Varro, L., D'Ambrosio, D., and Spencer, T., Net zero by 2050: A roadmap for the global energy sector. 2021.
2. Paris, I., Global EV outlook 2021. 2022.
3. Nie, Y., Wang, E., Guo, Q., and Shen, J., Examining Shanghai Consumer Preferences for Electric Vehicles and Their Attributes. Sustainability, 2018. 10(6).
4. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., and He, X., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
5. Gungor, S., Cetkin, E., and Lorente, S., Thermal and electrical characterization of an electric vehicle battery cell, an experimental investigation. Applied Thermal Engineering, 2022. 212: p. 118530.
6. Ramadass, P., Haran, B., White, R., and Popov, B.N., Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of Power Sources, 2002. 112(2): p. 606-613.
7. Lei, Z., Maotao, Z., Xiaoming, X., and Junkui, G., Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions. Applied Thermal Engineering, 2019. 159: p. 113847.
8. Zhao, G., Wang, X., Negnevitsky, M., and Zhang, H., A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 2021. 501.
9. Chen, K., Wu, W., Yuan, F., Chen, L., and Wang, S., Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 2019. 167: p. 781-790.
10. Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., and Yang, S., Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 2019. 155: p. 96-109.
11. Na, X., Kang, H., Wang, T., and Wang, Y., Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 2018. 143: p. 257-262.
12. A.Pesaran, A., Battery thermal models for hybrid vehicle simulations. Journal of Power Sources, 2002. 110(2): p. 377-382.
13. Wiberg, R. and Lior, N., Heat transfer from a cylinder in axial turbulent flows. International Journal of Heat and Mass Transfer, 2005. 48(8): p. 1505-1517.
14. Ibraheem, A., Evaluating the efficiency of polyhedral mesh elements in solving the problem of the flow around ship’s rudder. 2021.
15. Michalcová, V. and Kotrasová, K., The numerical diffusion effect on the cfd simulation accuracy of velocity and temperature field for the application of sustainable architecture methodology. Sustainability, 2020. 12(23): p. 10173.
16. Zaïdi, H., Fohanno, S., Taïar, R., and Polidori, G., Turbulence model choice for the calculation of drag forces when using the CFD method. Journal of Biomechanics, 2010. 43(3): p. 405-411.
17. Chen, Q., COMPARISON OF DIFFERENT k-ε MODELS FOR INDOOR AIR FLOW COMPUTATIONS. Numerical Heat Transfer, Part B: Fundamentals, 1995. 28(3): p. 353-369.
18. Chen, H.-T., Chang, S.-C., Hsu, M.-H., and You, C.-H., Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC. International Journal of Heat and Mass Transfer, 2021. 181: p. 121880.
19. Chen, H.-T., Hsu, M.-H., Yang, K.-C., Chang, K.-H., and Liu, K.-C., Study of inverse natural convection-conduction heat transfer for in-line tube heat exchanger in a hot box with experimental data. Journal of the Taiwan Institute of Chemical Engineers, 2022. 141: p. 104600.
20. Chen, H.T., Su, W.Y., Zheng, Y.J., Yang, T.S., and Chen, K.X., Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data. Progress in Nuclear Energy, 2022. 153.
21. Ansys, A.F., 18.2 Theory Guide. ANSYS inc, 2017. 390(1).
22. L. Prandtl, Uber die ausgebildete Turbulenz. ZAMM 5, 1925: p. 136-139.
23. Launder, B.E. and Spalding, D.B., Lectures in Mathematical Models of Turbulence. 1972: Academic Press.
24. OrszagS, A., Yakhot, FlanneryW, S., Boysan, F.E., Choudhury, D., Maruzewski, J., and Patel, B. Renormalization Group Modeling and Turbulence Simulations. 1993.
25. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994. 32(8): p. 1598-1605.
26. Arpaci, V., Salamet, A., Kao, S.-H., and Jaluria, Y., Introduction to Heat Transfer. Appl. Mech. Rev., 2002. 55(2): p. B37-B38.