簡易檢索 / 詳目顯示

研究生: 戴浩翔
Dai, Hao-Xiang
論文名稱: 以電池模型陣列放置於矩形空腔中分析熱傳及對流特性
Analysis of Heat Transfer and Convective Characteristics in a Rectangular Cavity with an Array of Battery Models
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 計算流體力學逆向熱傳導自然對流強制對流空腔
外文關鍵詞: Computational Fluid Dynamics, Inverse Heat Conduction, Natural Convection, Forced Convection, Cavity
相關次數: 點閱:110下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以特斯拉電動車18650電池陣列作為原型,透過簡化電池發熱特性,研究其在具有不同散熱條件之空腔中,透過實際物理模型進行熱傳及對流實驗,以此結合逆向熱傳導方法,並運用計算流體力學之計算結果,比較經驗公式以觀察不同紊流模型造成模擬結果之差異,選出適合用於計算之紊流模型,並在計算後彙整結果,結合後處理使流場與溫度場可視化,以此觀察不同條件下帶給電池組熱傳特性影響及空腔中對流方式變化,找尋出適合之電池模型散熱方式。
    比對了實驗數據及數值分析之結果,Zero-eq在本模型中具有較優良之計算能力,其在自然對流時選定模型時與經驗公式所計算得到之熱傳導係數h比較之最大誤差僅為6%,在自然對流時具有開口之空腔相對無開口之空腔,空氣溫度都能有所降低,而電池組具有最佳散熱性能為側邊具有上側及下側開口之空腔及頂部開放之空腔,而強制對流雖無經驗公式可做比較,但相較於其他紊流模型具有較好的收斂性及節省30%計算時間,在強制對流中,任一組之散熱性能皆優於於自然對流之組別,其單一溫度最高可達17K之溫差,而在強制對流之組別中,不同開口位置會改變場域中之流道,影響其不同位置電池之散熱能力,其中以側板具有上方及下方開口之組別電池組整體溫度較低,較為適合電池組之散熱。

    By comparing the experimental data with the numerical analysis results, the Zero-eq model exhibits superior computational capabilities in this model. The maximum discrepancy in the heat transfer coefficient (h) calculated by the Zero-eq model and the empirical formula for natural convection is only 6%. In natural convection, the presence of openings in the cavity leads to a decrease in air temperature. The cavity configuration with side openings at the upper and lower parts and top open exhibits the best heat dissipation performance for the battery pack. Although there are no empirical formulas for comparison in forced convection, the Zero-eq model demonstrates better convergence and saves 30% of computation time compared to other turbulence models. In forced convection, all groups exhibit better heat dissipation performance than the natural convection group, with a maximum temperature difference of 17K. Different opening positions in the forced convection group alter the flow channels in the domain, affecting the heat dissipation capabilities of batteries at different locations. The group with side openings at the upper and lower parts shows lower overall battery temperatures and is more suitable for battery cooling.

    Keywords: Computational Fluid Dynamics, Inverse Heat Conduction, Natural

    摘要 i Extend Abstract ii 目錄 vi 表目錄 x 圖目錄 xi 誌謝 xiii 符號說明 xiv 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的與方法 5 1-4 本文架構 7 第二章 逆向數值方法 8 2-1 逆向熱傳導簡介 8 2-2 計算流體力學簡介 9 2-3 基本假設 10 2-4 統御方程式 10 2-5 邊界條件 12 2-6 紊流模型 12 2-6-1 混合長度模型 (Mixing-length model) 13 2-6-2 標準 k-ε模型 (Standard k-ε model) 13 2-6-3 RNG k-ε模型 (RNG k-ε model) 15 2-6-4 SST k-ω模型 (SST k-ω model) 17 2-7 最小平方法 20 2-8 均方根誤差 21 第三章 實驗設計與方法 22 3-1 實驗簡介 22 3-2 實驗設備 23 3-2-1 電池發熱模組 24 3-2-2 矩形空腔 25 3-2-3 資料擷取系統 27 3-3 實驗步驟與組別 33 3-3-1 實驗步驟 33 3-3-2 實驗組別 36 第四章 數值模型分析 37 4-1 介紹 37 4-2 幾何模型 38 4-3 邊界條件設置 38 4-4 網格分析 39 4-4-1 網格品質 39 4-4-2 網格獨立性 41 4-5 求解器計算細項選定 45 第五章 結果與討論 46 5-1 流動模型選定 46 5-1-1 自然對流之紊流模型 46 5-1-2 強制對流之紊流模型 48 5-2 於自然對流下不同開口位置之影響 52 5-3 於強制對流下不同開口位置之影響 55 5-4 不同對流形式之影響 57 第六章 結論與未來展望 79 6-1 結論 79 6-2 未來展望 80 參考文獻 82

    1. Bouckaert, S., Pales, A.F., McGlade, C., Remme, U., Wanner, B., Varro, L., D'Ambrosio, D., and Spencer, T., Net zero by 2050: A roadmap for the global energy sector. 2021.
    2. Paris, I., Global EV outlook 2021. 2022.
    3. Nie, Y., Wang, E., Guo, Q., and Shen, J., Examining Shanghai Consumer Preferences for Electric Vehicles and Their Attributes. Sustainability, 2018. 10(6).
    4. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., and He, X., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
    5. Gungor, S., Cetkin, E., and Lorente, S., Thermal and electrical characterization of an electric vehicle battery cell, an experimental investigation. Applied Thermal Engineering, 2022. 212: p. 118530.
    6. Ramadass, P., Haran, B., White, R., and Popov, B.N., Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. Journal of Power Sources, 2002. 112(2): p. 606-613.
    7. Lei, Z., Maotao, Z., Xiaoming, X., and Junkui, G., Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions. Applied Thermal Engineering, 2019. 159: p. 113847.
    8. Zhao, G., Wang, X., Negnevitsky, M., and Zhang, H., A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 2021. 501.
    9. Chen, K., Wu, W., Yuan, F., Chen, L., and Wang, S., Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 2019. 167: p. 781-790.
    10. Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., and Yang, S., Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 2019. 155: p. 96-109.
    11. Na, X., Kang, H., Wang, T., and Wang, Y., Reverse layered air flow for Li-ion battery thermal management. Applied Thermal Engineering, 2018. 143: p. 257-262.
    12. A.Pesaran, A., Battery thermal models for hybrid vehicle simulations. Journal of Power Sources, 2002. 110(2): p. 377-382.
    13. Wiberg, R. and Lior, N., Heat transfer from a cylinder in axial turbulent flows. International Journal of Heat and Mass Transfer, 2005. 48(8): p. 1505-1517.
    14. Ibraheem, A., Evaluating the efficiency of polyhedral mesh elements in solving the problem of the flow around ship’s rudder. 2021.
    15. Michalcová, V. and Kotrasová, K., The numerical diffusion effect on the cfd simulation accuracy of velocity and temperature field for the application of sustainable architecture methodology. Sustainability, 2020. 12(23): p. 10173.
    16. Zaïdi, H., Fohanno, S., Taïar, R., and Polidori, G., Turbulence model choice for the calculation of drag forces when using the CFD method. Journal of Biomechanics, 2010. 43(3): p. 405-411.
    17. Chen, Q., COMPARISON OF DIFFERENT k-ε MODELS FOR INDOOR AIR FLOW COMPUTATIONS. Numerical Heat Transfer, Part B: Fundamentals, 1995. 28(3): p. 353-369.
    18. Chen, H.-T., Chang, S.-C., Hsu, M.-H., and You, C.-H., Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC. International Journal of Heat and Mass Transfer, 2021. 181: p. 121880.
    19. Chen, H.-T., Hsu, M.-H., Yang, K.-C., Chang, K.-H., and Liu, K.-C., Study of inverse natural convection-conduction heat transfer for in-line tube heat exchanger in a hot box with experimental data. Journal of the Taiwan Institute of Chemical Engineers, 2022. 141: p. 104600.
    20. Chen, H.T., Su, W.Y., Zheng, Y.J., Yang, T.S., and Chen, K.X., Prediction of 3D natural convection heat transfer characteristics in a shallow enclosure with experimental data. Progress in Nuclear Energy, 2022. 153.
    21. Ansys, A.F., 18.2 Theory Guide. ANSYS inc, 2017. 390(1).
    22. L. Prandtl, Uber die ausgebildete Turbulenz. ZAMM 5, 1925: p. 136-139.
    23. Launder, B.E. and Spalding, D.B., Lectures in Mathematical Models of Turbulence. 1972: Academic Press.
    24. OrszagS, A., Yakhot, FlanneryW, S., Boysan, F.E., Choudhury, D., Maruzewski, J., and Patel, B. Renormalization Group Modeling and Turbulence Simulations. 1993.
    25. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994. 32(8): p. 1598-1605.
    26. Arpaci, V., Salamet, A., Kao, S.-H., and Jaluria, Y., Introduction to Heat Transfer. Appl. Mech. Rev., 2002. 55(2): p. B37-B38.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE