簡易檢索 / 詳目顯示

研究生: 黃宇瀚
Huang, Yu-Han
論文名稱: 優化半導體高分子微區介面阻抗之電路模型與量測方法學
Optimizing Interfacial Impedance in Nano-Contact Modeling and Methodology of Semiconducting Polymers
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 97
中文關鍵詞: 導電高分子薄膜聚(3-己基噻吩)原子力顯微鏡電化學阻抗頻譜
外文關鍵詞: conductive polymer thin film, poly(3-hexylthiophene), atomic force microscopy, electrochemical impedance spectroscopy
相關次數: 點閱:16下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著可撓式電子時代的來臨,兼具柔性與溶液製程優勢的導電高分子,已成為實現軟性顯示器與穿戴式感測器等創新應用的核心材料。然而,這類材料的導電性能高度依賴其薄膜中的分子排列,因此,建立能準確評估其微觀電性的方法,對於材料開發至關重要。本研究建立一套結合具備奈米級空間解析度的原子力顯微鏡(Atomic Force Microscopy, AFM)與電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS)進行電性量測,雖能提供高解析度,但奈米尺度量測中探針—樣品接觸面積極小,容易產生高接觸電阻,干擾薄膜本徵電性的判讀。
    為突破此量測困境,本研究旨在建立一套完整的微區阻抗分析方法學。透過系統性地調控探針與電極的幾何關係,以釐清不同物理參數對量測的影響。為根本性地改善探針與樣品之接觸介面,本研究將探討以液態金屬進行探針表面改質,期望能形成更理想且穩定的電性接觸,以降低量測的不確定性。同時,本研究亦建構了一套環境濕度調控系統,用以分析環境因子在奈米尺度下,對電性量測穩定性與再現性的影響。藉由此整合性的實驗設計,為軟性半導體材料的性能評估,提供一套標準化的量測與分析基準。
    綜上所述,本研究不僅提出可精確解析奈米尺度下接觸電阻與薄膜電阻之量測與分析方法,亦開發出以液態金屬改質探針有效降低接觸電阻的解決方案,並釐清環境濕度在微區電性量測中的作用機制。此成果為有機半導體材料之性能評估與元件介面設計提供可靠之理論與技術基礎。

    With the advent of the flexible electronics era, conductive polymers—offering both mechanical flexibility and solution-processability—have emerged as key materials for innovative applications such as flexible displays and wearable sensors. Their electrical performance, however, is strongly dependent on the molecular arrangement within thin films, making accurate evaluation of their microscopic electrical properties essential for material development. This study establishes a nanoscale electrical characterization approach by integrating Atomic Force Microscopy (AFM) with Electrochemical Impedance Spectroscopy (EIS). While this combination offers high spatial resolution, the extremely small probe–sample contact area in nanoscale measurements often induces significant contact resistance, obscuring the intrinsic film properties.
    To address this challenge, a comprehensive localized impedance analysis methodology is developed. By systematically tuning the geometric relationship between the contact surface of probe and thin film, the method clarifies the influence of different physical parameters on measurement outcomes. Furthermore, liquid metal modification of AFM probes is explored to achieve more stable and ideal electrical contact, while a controlled-humidity environment is implemented to assess the impact of ambient conditions on measurement stability and reproducibility. This integrated framework provides a standardized basis for the nanoscale electrical evaluation of flexible semiconducting polymers, supporting their optimization and device interface engineering.

    摘要 I 目錄 X 表目錄 XIII 圖目錄 XIV 第一章、緒論 1 研究動機 1 第二章、文獻回顧 2 2.1 電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS) 2 2.1.1 電化學阻抗圖譜簡介 2 2.1.2 電化學阻抗圖譜之歷史發展 2 2.1.3 等效電路模型與Nyquist、Bode圖分析 3 2.1.4 微區阻抗量測(Localized impedance measurement) 10 2.2 導電高分子(Conductive polymers) 12 2.2.1 導電高分子簡介 12 2.2.2 導電機制與能帶 13 2.2.3 導電高分子傳導路徑 15 2.3 自組裝單分子層(Self-Assembled Monolayers, SAMs) 17 2.3.1 自組裝單分子層簡介 17 2.3.2 自組裝單分子層結構與製程 18 第三章、實驗材料和儀器 20 3.1 實驗藥品與材料 20 3.2 實驗裝置 21 3.3 量測儀器與原理 23 3.3.1 原子力顯微鏡(Atomic Force Microscopy) 23 3.3.2 電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS) 26 3.3.3 極化拉曼散射光譜儀(Polarized Raman Scattering Spectrometer) 34 第四章、實驗架構與流程 38 4.1 有序高分子薄膜製備流程 38 4.1.1 晶圓切割 38 4.1.2 基板清洗與表面初始化 38 4.1.3 設計奈米溝槽 39 4.1.4 表面羥基密度調控 40 4.1.5 基板表面自組裝單分子層改質 41 4.1.6 高分子薄膜沉積 41 4.2 電化學阻抗圖譜(EIS)量測方法 42 第五章、實驗結果與討論 44 5.1 傳統固態針尖之阻抗量測 44 5.1.1 介面量測參數之最佳化 44 5.1.2 阻抗頻譜之總體特徵與等效電路模型 47 5.1.3 不同水平距離之微區阻抗量測 50 5.1.4 不同下針力道之微區阻抗量測 54 5.2 針尖介面改質:液態金屬柔性電極 56 5.2.1 目的與動機 56 5.2.2 液態金屬探針之製備 57 5.2.3 不同水平距離之微區阻抗量測 58 5.2.4 不同下針力道之微區阻抗量測 62 5.2.5 金屬—有機半導體接觸介面分析與優化 66 5.3 環境濕度對微區阻抗之影響 70 5.3.1 濕度控制系統 70 5.3.2 不同濕度下之微區阻抗量測 71 5.3.3 不同水平距離改變濕度之微區阻抗量測 73 第六章、結論 77 參考文獻 78

    1. Macdonald, D.D., Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 2006. 51(8): p. 1376-1388.
    2. Chang, B.Y. and S.M. Park, Electrochemical impedance spectroscopy. Annu Rev Anal Chem (Palo Alto Calif), 2010. 3: p. 207-29.
    3. Lasia, A., The Origin of the Constant Phase Element. The Journal of Physical Chemistry Letters, 2022. 13(2): p. 580-589.
    4. Lazanas, A.C. and M.I. Prodromidis, Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas Sci Au, 2023. 3(3): p. 162-193.
    5. Lee, W., et al., Nanoscale impedance and complex properties in energy-related systems. MRS Bulletin, 2012. 37(7): p. 659-667.
    6. Darowicki, K., A. Zielinski, and J.K. K, Application of dynamic impedance spectroscopy to atomic force microscopy. Sci Technol Adv Mater, 2008. 9(4): p. 045006.
    7. Alan J. Heeger, A.G.M.a.H.S., The Nobel Prize in Chemistry, 2000: Conductive polymers The Royal Swedish Academy of Sciences, 2000.
    8. Abrahamsson, T., Synthetic Functionalities for Ion and Electron Conductive Polymers: Applications in Organic Electronics and Biological Interfaces. 2021: Linköping Studies in Science and Technology.
    9. Yao, Y., H. Dong, and W. Hu, Ordering of conjugated polymer molecules: recent advances and perspectives. Polymer Chemistry, 2013. 4(20).
    10. Liang, J., X. Ouyang, and Y. Cao, Interfacial and confined molecular-assembly of poly(3-hexylthiophene) and its application in organic electronic devices. Sci Technol Adv Mater, 2022. 23(1): p. 619-632.
    11. Miyake, T., et al., Nanopatterning of hydroxy-terminated self-assembled monolayer taking advantage of terminal group modification. Chemical Physics Letters, 2006. 426(4-6): p. 361-364.
    12. Zheng Yan, Z.S., Wei Lu, Jun Yao, Yu Zhu, and James M. Tour*, Controlled Modulation of Electronic Properties of Graphene by Self-Assembled Monolayers on SiO2 Substrates. ACS Nano, 2011: p. 1535–1540.
    13. Wang, Y. and M. Lieberman, Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2. Langmuir, 2003. 19(4): p. 1159-1167.
    14. Rozlosnik, N., M.C. Gerstenberg, and N.B. Larsen, Effect of Solvents and Concentration on the Formation of a Self-Assembled Monolayer of Octadecylsiloxane on Silicon (001). Langmuir, 2003. 19(4): p. 1182-1188.
    15. Tiao, H.-C., et al., Effect of hydroxyl density on condensation behaviors of self-assembled monolayers and performance of pentacene-base organic thin-film transistors. Organic Electronics, 2012. 13(6): p. 1004-1011.
    16. Maletz, E. Scientific Image - Atomic Force Microscope Illustration. 2016; Available from: https://www.nisenet.org/catalog/scientific-image-atomic-force-microscope-illustration#related-resources.
    17. Payami Golhin, A. and A. Cavaleiro, Improvement of the tribological performance of WSCF coatings under dry and lubricated conditions. 2019.
    18. Rennie, J. Are voltage and current in phase in a transmission line with a lossless medium? 2023; Available from: https://physics.stackexchange.com/questions/751788/are-voltage-and-current-in-phase-in-a-transmission-line-with-a-lossless-medium.
    19. Higashino, S. e^(iπ) + 1 = 0: The Most Beautiful Theorem in Mathematics 2021; Available from: https://medium.com/@satoshihgsn/e-i%CF%80-1-0-the-most-beautiful-theorem-in-mathematics-493a7f4e7332.
    20. Understanding the Specifications of your Potentiostat. Available from: https://www.gamry.com/application-notes/instrumentation/understanding-specs-of-potentiostat/.
    21. Zensor. Introduction of AC Impedance basics(II). Available from: https://www.zensor.com.tw/Article18.html.
    22. Shepard, J. What does electrochemical impedance spectroscopy have to do with Li-ion health? 2023; Available from: https://www.batterypowertips.com/what-does-electrochemical-impedance-spectroscopy-have-to-do-with-li-ion-health-faq/.
    23. Qu, S., et al., Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG Asia Materials, 2016. 8(7): p. e292-e292.
    24. Girtan, M., On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Organic Electronics, 2013. 14(1): p. 200-205.
    25. Ofuonye, B., et al., Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures. Semiconductor Science and Technology, 2014. 29: p. 095005.
    26. Workfunction Values (Reference Table). Available from: https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Bulk_Properties/B1:_Workfunction_Values_%28Reference_Table%29.
    27. Plevachuk, Y., et al., Thermophysical Properties of the Liquid Ga–In–Sn Eutectic Alloy. Journal of Chemical & Engineering Data, 2014. 59(3): p. 757-763.
    28. Santos, S. and A. Verdaguer, Imaging Water Thin Films in Ambient Conditions Using Atomic Force Microscopy. Materials (Basel), 2016. 9(3).
    29. Truman S. Light, a.S.L., b,*,z Anthony C. Bevilacqua,c and a.K.R. Morashc, The Fundamental Conductivity and Resistivity of Water. Electrochemical and Solid-State Letters, 2005: p. E16-E19.
    30. Yuan, Y. and M. Lanza, The Effect of Relative Humidity in Conductive Atomic Force Microscopy. Adv Mater, 2024. 36(51): p. e2405932.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE