| 研究生: |
邱奕斌 Chiou, Yi-Bin |
|---|---|
| 論文名稱: |
計算流體力學分析低溫餘熱熱電系統搭配板式鰭片和演化計算設計分段熱電發電器 Computational fluid dynamic analysis of low-temperature waste heat thermoelectric system with plate-fin and geometry design of segmented thermoelectric generator by evolutionary computation |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 熱電發電器 、輸出功率和效率 、來源項 、計算流體動力學 、雷諾數 、板式鰭片 、餘熱回收 、分段結構 、方鈷礦 、最佳化 、多目標遺傳算法 、演化計算 |
| 外文關鍵詞: | Thermoelectric generator, Output power and efficiency, Source term, Computational fluid dynamic, Reynolds number, Plate fins, Waste heat recovery, Segmented elements, Skutterudite, Optimization, Multi-objective genetic algorithm, Evolutionary computation |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人們對於能源問題的關注持續增加。許多國家對於替代能源的需求也變得越來越重要。熱電(TE)是一種友好、可靠且可持續的能源技術。這項技術可應用於許多不同的領域,包括航空航天、工業餘熱回收、石油化工等。本研究主要對熱電發電系統進行探討,內容可分為兩部分。第一部分為使用計算流體力學分析低溫餘熱熱電系統搭配板式鰭片;第二部分是透過演化計算設計分段熱電發電器。
在第一部分中,研究了熱電系統用以回收工業低溫餘熱來進行發電。餘熱的主要來源考慮為低溫餘熱水。本研究還模擬了餘熱空氣來比較不同工作流體對熱電發電的影響。在工業中低溫餘熱具有研究潛力,因為其佔了工業餘熱總量的60 %。在這項研究中,熱電模塊嵌入在餘熱管道中。為了解熱電模組的功率輸出性能,研究開發並完成了考慮熱電效應的三維流體力學數值模擬。冷卻方法設定了兩種,風冷和水冷系統。為了解熱電模組溫度分佈,使用分區結構進行分析。沒有分區的熱電模組與八個分區的輸出功率比較皆為相同的0.066 W。因此,簡化分割的熱電模組可用作仿真的基礎。另外,確定了諸如流體速度(Re=10、100和1,000)、流體溫度(=353.15 K)和傳熱等操作條件的影響。這項研究後續模擬了九片板式鰭片,並比較了分別在Re =10、100和1,000時的每個熱電性能。此外,本研究更深入探討從三到二十七片鰭片對於熱電系統的影響。在Re =10、100和1000時,最佳鰭片數量在二十一到二十七片之間。結果表明,當Re =1,000時有二十七片鰭片時,最大總輸出功率和效率為0.411 W和0.95 %。將熱電模組的最大總發電量和平均轉換效率與無鰭情況進行了比較。性能分別提高了105.5 %和43.94 %。結果,具有合適的板式鰭片結構的低溫餘熱回收系統是增強熱電性能的有前途的方法。
第二部分研究主要目的集中在分段熱電發電器系統的設計上,使最佳系統幾何可以最大化輸出功率。含9.1 % In0.4Co4Sb12的Skutterudite(Sr, Ba, Yb)yCo4Sb12被用作n型元素,而DD0.59Fe2.7Co1.3Sb11.8Sn0.2被用作p型元素。以上所述熱電材料被選用作熱端分段。水熱合成納米結構的熱電材料(Bi0.4Sb1.6Te3)及Bi-Te基熱電材料(Bi2Te3−xSex)作為冷端分段熱電材料。為了達到最優設計,本研究開發了一種數值方法並且同時採用了多目標遺傳算法進行優化設計。在尋找分段的最佳組合期間的計算過程被可視化作圖,並且發現四代足以達到目標。在分段半導體高度總長為3 mm時,最佳的n型和p型冷端段長度分別為0.37 mm和0.92 mm。與等分段的熱電發電器相比,在400 K的溫差下優化的分段模型可以增加15.15 %的輸出功率,其效率為13.19 %,所得的數據遠高於常規熱電發電器。另外,在模擬過程中阻抗匹配理論考慮於分段式熱電發電器會有誤差的出現。一對中的熱通量分佈取決於溫度差。總體而言,具有演化計算設計分段的熱電發電器是增強熱電發電器性能中有前途的工具。
In recent years, concerns on energy issues have increased significantly. The need for alternative energy sources is important for many countries. Thermoelectricity (TE) is a friendly, reliable, and sustainable energy resource. This technology could be applied in many fields, including aerospace, industrial waste heat recovery, petrochemical, etc. This study mainly discusses the thermoelectric power generation system, and the content can be divided into two parts. The first part is the use of computational fluid dynamics to analyze the low-temperature waste heat and power system with plate fins; the second part is to design the geometry of the segmented thermoelectric generator through evolutionary calculations.
In the first part, this study examines the use of thermoelectric systems to recover the industrial waste heat for power generation. The main source of this waste heat is the low-temperature wastewater. The exhaust gas is simulated to compare the effects of working fluids on the thermoelectric power generation. Low-temperature waste heat has great potential because it accounts for 60 % of total industrial waste heat. In this study, thermoelectric modules (TEMs) are installed in a waste heat channel. To evaluate the power output performance of the TEMs, a three-dimensional numerical simulation that is based on thermoelectric effects is developed and ran. Air-cooling and water-cooling are considered. To understand the TEM temperature distribution, no partitioned structure is used for the analysis. No partitioned TEM has the same output power 0.066 W with eight partitions. Therefore, no partitioned TEM can be simplified as a basis for simulation. The effects of the operating conditions, such as fluid velocity (Re=10, 100, and 1,000), fluid temperature (=353.15 K), and heat transfer are determined. A simulation that involves nine fins is run to compare thermoelectric performances at Re=10, 100, and 1,000. The effect of the number of fins from three to twenty-seven is determined in detail. The optimal number of fins is in the range of twenty-one to twenty-seven at Re=10, 100, and 1000. The maximum total output power and conversion efficiency are 0.411 W and 0.95 % with twenty-seven fins at Re=1,000. The maximum total power generation and mean conversion efficiency of the TEMs are compared with no fin’s cases. The performance increases 105.5 % and 43.94 % higher, respectively, than without fins. As a result, low-temperature waste heat recovery system with an appropriate fin structure has potential for improving thermoelectric performance.
The purpose of second part study focuses on the design of a segmented thermoelectric generator system to maximize the system output power. Skutterudite, (Sr, Ba, Yb)yCo4Sb12 with 9.1 % In0.4Co4Sb12, is used as the n-type element, while DD0.59Fe2.7Co1.3Sb11.8Sn0.2 is used as the p-type one. They both are employed as the hot side segments. Alternatively, hydrothermal synthesized nanostructure thermoelectric material (Bi0.4Sb1.6Te3) and the Bi–Te thermoelectric material (Bi2Te3−xSex) are chosen as the cold side segments. To achieve the optimum design, a numerical method is developed, while the multi-objective genetic algorithm is adopted. The evolutionary computation processes during seeking the optimum combination of the segments are visualized, and it is found that four generations are enough for reaching the target. With the leg length of 3 mm, the optimum n-type and p-type cold side segment lengths are 0.37 mm and 0.92 mm, respectively. Compared to the equal-segmented thermoelectric couple, the optimized couple at a temperature difference of 400 K can increase the output power by 15.15 % and its efficiency is 13.19 % which is much higher than conventional thermoelectric generators. The theory of impedance matching does not apply to the segmented thermoelectric generator. The heat flux distribution in the couple is dependent on the temperature difference. Overall, the segmented elements with evolutionary computation design is a promising tool for intensifying thermoelectric generator performance.
[1] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nature Materials. 2008;7:105-14.
[2] Gou X, Xiao H, Yang S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Applied Energy. 2010;87:3131-6.
[3] Ji C, Qin Z, Dubey S, Choo FH, Duan F. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy. 2017;205:1-12.
[4] Zhou N, Wang X, Chen Z, Wang Z. Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas. Energy. 2013;55:216-25.
[5] Bell LE. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science. 2008;321:1457.
[6] Twaha S, Zhu J, Yan Y, Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews. 2016;65:698-726.
[7] MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, et al. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy & Environmental Science. 2017;10:2168-79.
[8] Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, et al. High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy & Environmental Science. 2018;11:1520-35.
[9] Yan Y, Malen JA. Periodic heating amplifies the efficiency of thermoelectric energy conversion. Energy & Environmental Science. 2013;6:1267-73.
[10] Ibrahim A, Rahnamayan S, Vargas Martin M, Yilbas B. Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics. Energy. 2014;77:305-17.
[11] Erturun U, Erermis K, Mossi K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Applied Thermal Engineering. 2014;73:128-41.
[12] Tian H, Jiang N, Jia Q, Sun X, Shu G, Liang X. Comparison of Segmented and Traditional Thermoelectric Generator for Waste Heat Recovery of Diesel Engine. Energy Procedia. 2015;75:590-6.
[13] Ouyang Z, Li D. Design of segmented high-performance thermoelectric generators with cost in consideration. Applied Energy. 2018;221:112-21.
[14] Zhang Q, Liao J, Tang Y, Gu M, Ming C, Qiu P, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science. 2017;10:956-63.
[15] Chen W-H, Wu P-H, Lin Y-L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy. 2018;209:211-23.
[16] Ma X, Shu G, Tian H, Xu W, Chen T. Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization. Applied Energy. 2019;248:614-25.
[17] Shittu S, Li G, Zhao X, Ma X, Akhlaghi YG, Ayodele E. Optimized high performance thermoelectric generator with combined segmented and asymmetrical legs under pulsed heat input power. Journal of Power Sources. 2019;428:53-66.
[18] Hashim H, Bomphrey JJ, Min G. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system. Renewable Energy. 2016;87:458-63.
[19] Chen W-H, Wang C-C, Hung C-I, Yang C-C, Juang R-C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy. 2014;64:287-97.
[20] Ibeagwu OI. Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energy. 2019;180:90-106.
[21] Ming T, Yang W, Huang X, Wu Y, Li X, Liu J. Analytical and numerical investigation on a new compact thermoelectric generator. Energy Conversion and Management. 2017;132:261-71.
[22] Rattner AS, Meehan TJ. Simple analytic model for optimally sizing thermoelectric generator module arrays for waste heat recovery. Applied Thermal Engineering. 2019;146:795-804.
[23] Ali H, Yilbas BS, Al-Sharafi A. Innovative design of a thermoelectric generator with extended and segmented pin configurations. Applied Energy. 2017;187:367-79.
[24] Ge Y, Liu Z, Sun H, Liu W. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy. 2018;147:1060-9.
[25] Shu G, Ma X, Tian H, Yang H, Chen T, Li X. Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery. Energy. 2018;160:612-24.
[26] Wen J, Yang H, Tong X, Li K, Wang S, Li Y. Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Conversion and Management. 2016;117:482-9.
[27] Dharmaiah P, Kim H-S, Lee C-H, Hong S-J. Influence of powder size on thermoelectric properties of p-type 25%Bi2Te375%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. Journal of Alloys and Compounds. 2016;686:1-8.
[28] Rogl G, Grytsiv A, Yubuta K, Puchegger S, Bauer E, Raju C, et al. In-doped multifilled n-type skutterudites with ZT=1.8. Acta Materialia. 2015;95:201-11.
[29] Rogl G, Grytsiv A, Heinrich P, Bauer E, Kumar P, Peranio N, et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X=Ge, Sn) reaching ZT>1.3. Acta Materialia. 2015;91:227-38.
[30] Chen Z, lin MY, Xu GD, Chen S, Zhang JH, Wang MM. Hydrothermal synthesized nanostructure Bi–Sb–Te thermoelectric materials. Journal of Alloys and Compounds. 2014;588:384-7.
[31] Aranguren P, Araiz M, Astrain D, Martínez A. Thermoelectric generators for waste heat harvesting: A computational and experimental approach. Energy Conversion and Management. 2017;148:680-91.
[32] Zou S, Kanimba E, Diller TE, Tian Z, He Z. Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator. Science of The Total Environment. 2018;635:1215-24.
[33] Kim TY, Lee S, Lee J. Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator. Energy Conversion and Management. 2016;124:470-9.
[34] Ma T, Lu X, Pandit J, Ekkad SV, Huxtable ST, Deshpande S, et al. Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators. Applied Energy. 2017;185:1343-54.
[35] Niu X, Yu J, Wang S. Experimental study on low-temperature waste heat thermoelectric generator. Journal of Power Sources. 2009;188:621-6.
[36] Wang D, Liu Y, Jiang J, Pang W, Lau WM, Mei J. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants. Journal of Electronic Materials. 2017;46:3109-14.
[37] Gaurav K, Sisodia S, Pandey SK. Calculation of efficiency and power output by considering different realistic prospects for recovering heat from automobile using thermoelectric generator. Journal of Renewable and Sustainable Energy. 2017;9:064703.
[38] Hsu C-T, Huang G-Y, Chu H-S, Yu B, Yao D-J. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Applied Energy. 2011;88:1291-7.
[39] Saufi Sulaiman M, Singh B, Mohamed WANW. Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle. Energy. 2019;179:628-46.
[40] Ong HC, Chen W-H, Farooq A, Gan YY, Lee KT, Ashokkumar V. Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renewable and Sustainable Energy Reviews. 2019;113:109266.
[41] Zhao Y, Wang S, Ge M, Liang Z, Liang Y, Li Y. Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery. Applied Energy. 2019;239:425-33.
[42] Rana S, Orr B, Iqbal A, Ding LC, Akbarzadeh A, Date A. Modelling and Optimization of Low-temperature Waste Heat Thermoelectric Generator System. Energy Procedia. 2017;110:196-201.
[43] Suzuki RO, Tanaka D. Mathematical simulation of thermoelectric power generation with the multi-panels. Journal of Power Sources. 2003;122:201-9.
[44] Elankovan R, Suresh S, Karthick K, Hussain MMMD, Chandramohan VP. Evaluation of thermoelectric power generated through waste heat recovery from long ducts and different thermal system configurations. Energy. 2019;185:477-91.
[45] He W, Wang S. Performance Comparison of Different Exhaust Exchanger Types Considering Peak Net Power and Optimal Dimension in a Thermoelectric Generator System. Advanced Theory and Simulations. 2018;1:1800012.
[46] Lv S, He W, Jiang Q, Hu Z, Liu X, Chen H, et al. Study of different heat exchange technologies influence on the performance of thermoelectric generators. Energy Conversion and Management. 2018;156:167-77.
[47] Jang J-Y, Tsai Y-C, Wu C-W. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Energy. 2013;53:270-81.
[48] Stobart R, Wijewardane MA, Yang Z. Comprehensive analysis of thermoelectric generation systems for automotive applications. Applied Thermal Engineering. 2017;112:1433-44.
[49] Luo D, Wang R, Yu W, Zhou W. A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery. Applied Energy. 2020;270:115181.
[50] Chen W-H, Lin Y-X, Chiou Y-B, Lin Y-L, Wang X-D. A computational fluid dynamics (CFD) approach of thermoelectric generator (TEG) for power generation. Applied Thermal Engineering. 2020;173:115203.
[51] Suter C, Jovanovic ZR, Steinfeld A. A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization. Applied Energy. 2012;99:379-85.
[52] Wang Y, Li S, Zhang Y, Yang X, Deng Y, Su C. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator. Energy Conversion and Management. 2016;126:266-77.
[53] Wang Y, Wu C, Tang Z, Yang X, Deng Y, Su C. Optimization of Fin Distribution to Improve the Temperature Uniformity of a Heat Exchanger in a Thermoelectric Generator. Journal of Electronic Materials. 2015;44:1724-32.
[54] Du Q, Diao H, Niu Z, Zhang G, Shu G, Jiao K. Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine. Energy Conversion and Management. 2015;101:9-18.
[55] Boccardi S, Ciampa F, Meo M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Materials and Structures. 2019;28:105057.
[56] Wan Q, Liu X, Gu B, Bai W, Su C, Deng Y. Thermal and acoustic performance of an integrated automotive thermoelectric generation system. Applied Thermal Engineering. 2019;158:113802.
[57] El-Adl AS, Mousa MG, Hegazi AA. Performance analysis of a passively cooled thermoelectric generator. Energy Conversion and Management. 2018;173:399-411.
[58] Selvam C, Manikandan S, Krishna NV, Lamba R, Kaushik SC, Mahian O. Enhanced thermal performance of a thermoelectric generator with phase change materials. International Communications in Heat and Mass Transfer. 2020;114:104561.
[59] Cai L, Li P, Luo Q, Zhai P, Zhang Q. Geometry Optimization of a Segmented Thermoelectric Generator Based on Multi-parameter and Nonlinear Optimization Method. Journal of Electronic Materials. 2017;46:1552-66.
[60] Meng J-H, Zhang X-X, Wang X-D. Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy. 2014;71:367-76.
[61] Kwan TH, Wu X, Yao Q. Thermoelectric device multi-objective optimization using a simultaneous TEG and TEC characterization. Energy Conversion and Management. 2018;168:85-97.
[62] Ma Q, Fang H, Zhang M. Theoretical analysis and design optimization of thermoelectric generator. Applied Thermal Engineering. 2017;127:758-64.
[63] Chen W-H, Huang S-R, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158:44-54.
[64] He W, Wang S, Lu C, Li Y, Zhang X. An Optimization Analysis of Thermoelectric Generator Structure for Different Flow Directions of Working Fluids. Energy Procedia. 2014;61:718-21.
[65] Chen M, Rosendahl LA, Condra T. A three-dimensional numerical model of thermoelectric generators in fluid power systems. International Journal of Heat and Mass Transfer. 2011;54:345-55.
[66] Lesage FJ, Pagé-Potvin N. Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance. Energy Conversion and Management. 2013;66:98-105.
[67] Kim HS, Kikuchi K, Itoh T, Iida T, Taya M. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys. Materials Science and Engineering: B. 2014;185:45-52.
[68] Meng J-H, Zhang X-X, Wang X-D. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model. Journal of Power Sources. 2014;245:262-9.
[69] Wang T-H, Wang Q-H, Leng C, Wang X-D. Parameter analysis and optimal design for two-stage thermoelectric cooler. Applied Energy. 2015;154:1-12.
[70] Kim TY, Kim SJ. Fluid flow and heat transfer characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer. 2009;52:5358-70.
[71] Chen W-H, Lin Y-X, Wang X-D, Lin Y-L. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties. Applied Energy. 2019;241:11-24.
[72] Chen W-H, Huang S-R, Wang X-D, Wu P-H, Lin Y-L. Performance of a thermoelectric generator intensified by temperature oscillation. Energy. 2017;133:257-69.
[73] Chen W-H, Wu P-H, Wang X-D, Lin Y-L. Power output and efficiency of a thermoelectric generator under temperature control. Energy Conversion and Management. 2016;127:404-15.
[74] Wang Y, Shi Y, Mei D, Chen Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy. 2018;215:690-8.
[75] Wang X-D, Huang Y-X, Cheng C-H, Ta-Wei Lin D, Kang C-H. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy. 2012;47:488-97.
[76] Hsu C-T, Huang G-Y, Chu H-S, Yu B, Yao D-J. An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module. Applied Energy. 2011;88:5173-9.
[77] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002;6:182-97.
[78] Lee U, Park S, Lee I. Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II). Energy. 2020;196:117090.
[79] Lee W, Lee J. Development of a compact thermoelectric generator consisting of printed circuit heat exchangers. Energy Conversion and Management. 2018;171:1302-10.
[80] Niu Z, Diao H, Yu S, Jiao K, Du Q, Shu G. Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine. Energy Conversion and Management. 2014;85:85-101.
[81] Ji D, Tseng KJ, Wei Z, Zheng Y, Romagnoli A. A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine. Journal of Electronic Materials. 2017;46:2908-14.
[82] Wang J, Liu S, Li L. Experiments and modeling on thermoelectric power generators used for waste heat recovery from hot water pipes. Energy Procedia. 2019;158:1052-8.
[83] Siddique ARM, Mahmud S, Heyst BV. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews. 2017;73:730-44.
[84] Kumar S, Mandal SK, Singh PK, Mishra SK, Das AK. Performance Analysis of a Thermoelectric Generation System with Different Flow Configurations. Journal of Electronic Materials. 2019;48:4607-17.
[85] Lu X, Yu X, Qu Z, Wang Q, Ma T. Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery. Energy Conversion and Management. 2017;150:403-14.
[86] Shittu S, Li G, Zhao X, Zhou J, Ma X, Akhlaghi YG. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Conversion and Management. 2020;207:112515.
[87] Massaguer E, Massaguer A, Montoro L, Gonzalez JR. Modeling analysis of longitudinal thermoelectric energy harvester in low temperature waste heat recovery applications. Applied Energy. 2015;140:184-95.
[88] Jain A, He Z. Powering microbial electrolysis cells by electricity generation from simulated waste heat of anaerobic digesters using thermoelectric generators. International Journal of Hydrogen Energy. 2020;45:4065-72.
[89] Omer G, Yavuz AH, Ahiska R, Calisal KE. Smart thermoelectric waste heat generator: Design, simulation and cost analysis. Sustainable Energy Technologies and Assessments. 2020;37:100623.
[90] Xiao X, Kim CN, Luo Y, Fan X, Deng Y. Performance Analysis of a Thermoelectric Generator with a Segmented Leg. Journal of Electronic Materials. 2019;48:7769-79.
[91] Shen Z-G, Liu X, Chen S, Wu S-Y, Xiao L, Chen Z-X. Theoretical analysis on a segmented annular thermoelectric generator. Energy. 2018;157:297-313.
[92] Ma X, Shu G, Tian H, Yang H, Chen T. Optimization of length ratio in segmented thermoelectric generators for engine’s waste heat recovery. Energy Procedia. 2019;158:583-8.
[93] Chen W-H, Liao C-Y, Hung C-I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Applied Energy. 2012;89:464-73.
[94] Bonin R, Boero D, Chiaberge M, Tonoli A. Design and characterization of small thermoelectric generators for environmental monitoring devices. Energy Conversion and Management. 2013;73:340-9.
[95] Luo Y, Kim CN. Effects of the cross‐sectional area ratios and contact resistance on the performance of a cascaded thermoelectric generator. International Journal of Energy Research. 2019;43:2172-87.