簡易檢索 / 詳目顯示

研究生: 許嘉珍
Hsu, Chia-Chen
論文名稱: 鑑定白花蝴蝶蘭獨腳金內酯生合成路徑基因及表現模式分析
Identification of strigolactones (SLs) biosynthesis genes from Phalaenopsis aphrodite subsp. formosana and characterization of their expression patterns
指導教授: 蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
中文關鍵詞: 台灣白花蝴蝶蘭獨腳金內酯生合成路徑殼聚醣
外文關鍵詞: Phalaenopsis aphrodite, strigolactones, biosynthesis pathway, chitosan
相關次數: 點閱:122下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣白花蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana) 在育種上被視為重要的親本。蝴蝶蘭是「部分真菌異營性」的蘭科植物,其種子不具有明顯分化之胚乳構造,因此在自然界中,蝴蝶蘭種子在萌芽時期高度仰賴蘭花菌根真菌(orchid mycorrhizal fungi, OMF)作為養分來源。目前已知大部分(80%)的陸生植物會藉由根部釋放獨腳金內酯(Strigolactones, SLs)到土壤中,促進叢枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)孢子萌芽,並引導菌絲進入根細胞,進行養分交換。特定專一性SLs具有不同生理活性來增加菌絲分支數量與結構,增加養分的吸收,此外,SLs也作為內源性的植物激素調節植物生理機能。儘管許多研究證實SLs是植物與共生真菌之間關鍵的溝通橋樑,SLs在蘭花與OMF之間的角色及其分子機制尚未被闡明。
    先前實驗室透過LC-MS/MS檢測出蝴蝶蘭種子會分泌兩種以上的SLs (Sorgolactone 和一群尚未定義的SLs,稱為SLXs),並描述了其訊號傳導路徑的分子機制。為瞭解蝴蝶蘭種子萌芽時期之SLs 之生合成路徑,本篇研究首先從白花蝴蝶蘭基因組中鑑定出SLs生合成路徑中的八個基因,PaD27、PaCCD7-1、PaCCD7-2、PaCCD7-3、PaCCD8、PaMAX1/PaCYP711A、PaCYP711A-O以及PaCYP722B。演化樹分析結果發現CYP711A-O之胺基酸序列相似於MAX1/CYP711A,但唯獨存在於蘭科植物中。進一步利用真菌細胞壁的重要組成—殼聚醣(chitosan, CHT),作為激發子(elicitor)以模擬來自微生物的訊號,透過轉錄組分析發現10 mg/L濃度的CHT在蝴蝶蘭種子確實影響SLs生合成路徑基因表現。基因表現分析結果顯示PaD27、PaCCD7-1、PaCCD7-3、PaCCD8、PaCYP722B的基因表現會受CHT處理誘導,也發現PaCCD7-2、PaMAX1/PaCYP711A、PaCYP711A-O基因表現不受CHT處理誘導,且PaCCD7-1在所有測試組織中具有最高表現量。最終透過這些結果提出台灣白花蝴蝶蘭SLs生合成路徑模型。

    Phalaenopsis aphrodite subsp. formosana contributed to the various commercial Phalaenopsis varieties. Phalaenopsis is classified as partially mycoheterotrophy which contain an undifferentiated embryo without a well-define endosperm. Therefore, require nutrition from orchid mycorrhizal fungi (OMF) during the early seed germination stage is essential to Phalaenopsis. Previous study suggested most (80%) of terrestrial plants release strigolactones (SLs) into soil to induce germination of AMF spores and accelerate the colonization with host plants. The SLs could guide the fungal hyphae to penetrate into the intracellularly inner cortex for nutrient exchange, especially under the condition of drought stress and/or limitation of phosphate. Moreover, SLs also act as endogenous phytohormone to regulate plant physiology. Although several researches suggested SLs play a vital role in the symbiosis between plant-fungi interaction, the role and the molecular mechanism of SLs still little known between orchids and OMF.
    Previously, more than two kinds of SLs (sorgolactone and a cluster of undefined SLs which named “SLXs”) have been detected in P. aphrodite subsp. formosana by HPLC-MS/MS analysis and the signaling transduction pathway was proposed. To investigate the biosynthesis pathway of SLs during seeds germination stage in P. aphrodite, we identified eight genes involved in the SL biosynthesis pathway, including PaD27、PaCCD7-1、PaCCD7-2、PaCCD7-3、PaCCD8、PaMAX1/PaCYP711A、PaCYP711A-O and PaCYP722B from P. aphrodite genome. Phylogenetic analysis indicated CYP711A-O subclade was specific existed in Orchidaceae. The specific component of fungal cell wall—chitosan (CHT) was further utilized as the elicitor from microbes. Transcriptome analysis suggested 10 mg/L of CHT actually affect gene expression of SLs biosynthetic pathway P. aphrodite seeds. Gene expression analysis indicated expressions level of PaD27、PaCCD7-1、PaCCD7-3、PaCCD8 and PaCYP722B are influenced by CHT. However, expressions level of PaCCD7-2、PaMAX1/PaCYP711A and PaCYP711A-O would not influenced by CHT. In addition, PaCCD7-1 showed highest expression level among tissues we examined for qRT-PCR analysis. Based on these results, we proposed a working model of SLs biosynthesis pathway in P. aphrodite orchid.

    中文摘要 I Abstract II 誌謝 IV Contents V List of Tables ………………………………………………………………………………………………..……….VI List of Figures………………………………………………………………………………………….…….……...VII List of Appendix Tables……………………………………………………………………………….….…….VIII List of Appendix Figures………………………………………………………………………………...……….IX Abbreviations………………………………………………………………………………………………………….X 1. Introduction 1 1.1 Orchidaceae 1 1.1.1 Partially and fully mycoheterotrophy orchids 1 1.1.2 Communication between orchids and OMF 1 1.2 Strigolactones 2 1.2.1 Structural diversity in the strigolactones 2 1.2.2 Strigolactones biosynthesis pathway 3 1.2.3 Agrosciences of strigolactones 3 1.3 Chitosan 4 1.3.1 Property of chitosan 4 1.3.2 Elicitor application of chitosan 5 2.Purpose 6 3. Material and Methods 7 3.1 Identification of SLs biosynthesis genes in orchids 7 3.2 Sequence alignments and phylogenetic analysis 7 3.3 Plant material growth condition 8 3.4 Chitosan stock solution preparing 8 3.5 Chitosan treatment of seeds 8 3.6 Transcriptome analysis of P. aphrodite subsp. formosana seeds 8 3.7 Real-time quantitative RT-PCR 9 3.8 Plant tissue preparation for genes expression analysis 10 3.9 Statistical analysis 10 4. Results 11 4.1 Multiple sequences alignment of cytochrome P450s family 11 4.2 Identification and phylogenetic analysis of D27 from Orchidaceae 12 4.3 Identification and phylogenetic analysis of CCD7 and CCD8 from Orchidaceae 13 4.4 Identification and phylogenetic analysis of cytochrome P450s from Orchidaceae 15 4.5 Transcriptome of sequence assembly and annotation 17 4.6 Characterization of entire DEGs in chitosan-treated seeds 18 4.7 Transcriptional changes in SLs and fatty acid metabolism pathway 19 4.8 Expression pattern of genes involved in SLs biosynthesis pathway 20 5. Discussion 23 5.1 Evolution of the genes involved in SL biosynthesis pathway in Orchidaceae 23 5.2 Influence of the seeds of P. aphrodite subsp. formosana with CHT treatment 24 5.3 Differential expression of the genes involved in SLs biosynthesis pathway 25 5.4 Putative model of SLs biosynthesis pathway in P. aphrodite subsp. formosana 27 7. References 28   List of Tables Table 1. Quantity of the genes involved in SLs biosynthesis pathway of Orchidaceae. 35 Table 2. The genes are involved in the SLs biosynthesis pathway of angiosperm. 36 Table 3. Accession number of D27 used in phylogenetic and alignment analysis. 37 Table 4. Accession number of CCD7 used in phylogenetic and alignment analysis. 38 Table 5. Accession number of CCD8 used in phylogenetic and alignment analysis. 39 Table 6. Accession number of CYP711 used in phylogenetic and alignment analysis. 40 Table 7. Accession number of CYP722 used in phylogenetic and alignment analysis. 41 Table 8. List of primers used for qRT-PCR analysis. 42 Table 9. UP-regulated unigenes in CHT-treated seeds. 43 Table 10. Down-regulation of unigenes in CHT-treated seeds. 44 Table 11. The predicted unigenes involved in SLs biosynthesis pathway. 46 Table 12. The predicted unigenes involved in SLs signaling pathway. 47 Table 13. The predicted unigenes involved in β-oxidation. 48 Table 14. The predicted unigenes involved in glyoxylate cycle. 49 Table 15. The predicted unigenes involved in tricarboxylic acid (TCA) cycle. 50 Table 16. Number of putative genes mapped in KEGG pathways. 51 Table 17. Statistical significance of gene expression performed by qRT-PCR analysis. 56 List of Figures Figure 1. The scientific name of partially and fully mycoheterotrophy orchids. 57 Figure 2. Mulcell divisionle sequence alignment of cytochrome P450 family proteins. 60 Figure 3. Phylogenetic analysis of D27 in plant kingdom. 61 Figure 4. Phylogenetic analysis of CCD7 in plant kingdom. 62 Figure 5. Phylogenetic analysis of CCD8 in plant kingdom. 63 Figure 6. The phylogenetic analysis of cytochrome P450 family. 64 Figure 7. Plotting PCA (Principal Component Analysis) of MS-vs-CHT seeds. 65 Figure 8. Venn diagram of number of expressed unigenes in MS-vs-CHT seeds. 66 Figure 9. Differential expression genes (DEGs) in seeds treated with MS and CHT. 67 Figure 10. Gene ontology enrichment analysis of DEGs. 68 Figure 11. KEGG pathway enrichment analysis of DEGs. 69 Figure 12. Volcano plot of DEGs in MS- and CHT-treated seeds. 70 Figure 13. Relative expression of SLs biosynthesis-related genes in MS-vs-CHT treated seeds. 71 Figure 14. Tissues of Phalaenopsis aphrodite subsp. formosana used for qRT-PCR. 72 Figure 15. Relative expression of SLs biosynthesis-related genes in different primordia. 73 Figure 16. Relative expression of SLs biosynthesis-related genes in different regions of root. 74 Figure 17. Relative expression of SLs biosynthesis-related gene in stem and young leaf. 75 Figure 18. Putative model of SLs biosynthesis pathway in P. aphrodite subsp. formosana. 76 List of Appendix Figures Appendix Figure 1. Similar polysaccharide structure—cellulose, chitin and chitosan. 77 Appendix Figure 2. Structural diversity of SLs. 78 Appendix Figure 3. Phylogenetic tree of the D27, D27L1 and D27L2. 79 Appendix Figure 4. The phylogenetic tree of the P450 enzyme. 80 Appendix Figure 5. Phylogenetic tree of the clan 85 family. 81 Appendix Figure 6. KEGG enrichment analysis of DoTc and Do. 82

    Akiyama, K., Matsuzaki, K.-i., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.
    Al-Babili, S., and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology 66, 161-186.
    Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., and Al-Babili, S. (2012). The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348-1351.
    Arditti, J. (1992). Fundamentals of orchid biology. (John Wiley & Sons).
    Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P., and Leyser, O. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell 8, 443-449.
    Borghi, L., Liu, G.-W., Emonet, A., Kretzschmar, T., and Martinoia, E. (2016). The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta 243, 1351-1360.
    Bruno, M., Hofmann, M., Vermathen, M., Alder, A., Beyer, P., and Al-Babili, S. (2014). On the substrate-and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Letters 588, 1802-1807.
    Bruno, M., Vermathen, M., Alder, A., Wüst, F., Schaub, P., van der Steen, R., Beyer, P., Ghisla, S., and Al‐Babili, S. (2017). Insights into the formation of carlactone from in‐depth analysis of the CCD 8‐catalyzed reactions. FEBS Letters 591, 792-800.
    Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W.-C., Liu, K.-W., Chen, L.-J., He, Y., Xu, Q., and Bian, C. (2015). The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47, 65-72.
    Chao, Y.T., Chen, W.C., Chen, C.Y., Ho, H.Y., Yeh, C.H., Kuo, Y.T., Su, C.L., Yen, S.H., Hsueh, H.Y., and Yeh, J.H. (2018). Chromosome‐level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal 16, 2027-2041.
    Chen, Y.H., Tsai, Y.J., Huang, J.Z., and Chen, F.C. (2005). Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Research 15, 639-657.
    Christenhusz, M.J.M., and Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261.
    Cook, C., Whichard, L.P., Turner, B., Wall, M.E., and Egley, G.H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
    Dell’Oste, V., Spyrakis, F., and Prandi, C. (2021). Strigolactones, from plants to human health: achievements and challenges. Molecules 26, 4579.
    Divya, K., Vijayan, S., Nair, S.J., and Jisha, M. (2019). Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. International Journal of Biological Macromolecules 124, 1053-1059.
    Dora, S., Terrett, O.M., and Sánchez-Rodríguez, C. (2022). Plant–microbe interactions in the apoplast: communication at the plant cell wall. The Plant Cell 34, 1532-1550.
    Edgar, R.C. (2004). MUSCLE: a mulcell divisionle sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 1-19.
    Gao, J., Zhang, T., Xu, B., Jia, L., Xiao, B., Liu, H., Liu, L., Yan, H., and Xia, Q. (2018). CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. International Journal of Molecular Sciences 19, 1062.
    Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19, 1-24.
    Guan, G., Azad, M.A.K., Lin, Y., Kim, S.W., Tian, Y., Liu, G., and Wang, H. (2019). Biological effects and applications of chitosan and chito-oligosaccharides. Frontiers in Physiology 10, 516.
    Hadwiger, L.A., and Beckman, J.M. (1980). Chitosan as a component of pea-Fusarium solani interactions. Plant Physiology 66, 205-211.
    Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A., and Deisenhofer, J. (1995). Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3, 41-62.
    Huang, C., Tian, Y., Zhang, B., Hassan, M.J., Li, Z., and Zhu, Y. (2021). Chitosan (CTS) Alleviates heat-induced leaf senescence in creeping Bentgrass by regulating chlorophyll metabolism, antioxidant defense, and the heat shock pathway. Molecules 26, 5337.
    Imai, M., Shimada, H., Watanabe, Y., Matsushima-Hibiya, Y., Makino, R., Koga, H., Horiuchi, T., and Ishimura, Y. (1989). Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proceedings of the National Academy of Sciences 86, 7823-7827.
    Ji, D., Ou, L., Ren, X., Yang, X., Tan, Y., Zhou, X., and Jin, L. (2022). Transcriptomic and Metabolomic Analysis Reveal Possible Molecular Mechanisms Regulating Tea Plant Growth Elicited by Chitosan Oligosaccharide. International Journal of Molecular Sciences 23, 5469.
    Jia, K.-P., Baz, L., and Al-Babili, S. (2018). From carotenoids to strigolactones. Journal of Experimental Botany 69, 2189-2204.
    Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X., Liu, G., Yu, H., and Yuan, Y. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401-405.
    Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., and Tang, D. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
    Kameoka, H., and Kyozuka, J. (2018). Spatial regulation of strigolactone function. Journal of Experimental Botany 69, 2255-2264.
    Kananont, N., Pichyangkura, R., Chanprame, S., Chadchawan, S., and Limpanavech, P. (2010). Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Scientia Horticulturae 124, 239-247.
    Kobae, Y. (2019). Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Frontiers in Environmental Science, 159.
    Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870-1874.
    López-Ráez, J.A., and Pozo, M.J. (2013). Chemical signalling in the arbuscular mycorrhizal symbiosis: biotechnological applications. In Symbiotic Endophytes (Springer), pp. 215-232.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., and Lopez, R. (2007). Clustal W and Clustal X version 2.0. bioinformatics 23, 2947-2948.
    Lee, chu. (2020). Genome-wide comparison of strigolactones signaling genes in Orchidaceae and functional characterization of PaD14s in Phalaenopsis aphrodite subsp. formosana. Institute of Tropical Plant Sciences and Microbiology National Cheng Kung University, Tainan. https://hdl.handle.net/11296/bn7szm.
    Lemke, P., Moerschbacher, B.M., and Singh, R. (2020). Transcriptome analysis of solanum tuberosum genotype rh89-039-16 in response to chitosan. Frontiers in Plant Science 11, 1193.
    Li, R., He, J., Xie, H., Wang, W., Bose, S.K., Sun, Y., Hu, J., and Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules 126, 91-100.
    Liu, G., Bollier, D., Gübeli, C., Peter, N., Arnold, P., Egli, M., and Borghi, L. (2018). Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. npj Microgravity 4, 1-10.
    Lopez-Moya, F., Suarez-Fernandez, M., and Lopez-Llorca, L.V. (2019). Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences 20, 332.
    Mitra, D., Rad, K.V., Chaudhary, P., Ruparelia, J., Sagarika, M.S., Boutaj, H., Mohapatra, P.K.D., and Panneerselvam, P. (2021). Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review. Current Research in Microbial Sciences 2, 100026.
    Ndimba, B.K., Chivasa, S., Hamilton, J.M., Simon, W.J., and Slabas, A.R. (2003). Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3, 1047-1059.
    Pimentel, H. (2014). What the FPKM? A review of RNA-Seq expression units (May).
    Rudolf, J.D., Chang, C.-Y., Ma, M., and Shen, B. (2017). Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Natural Product Reports 34, 1141-1172.
    Sasse, J., Simon, S., Gübeli, C., Liu, G.-W., Cheng, X., Friml, J., Bouwmeester, H., Martinoia, E., and Borghi, L. (2015). Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology 25, 647-655.
    Schlichting, I., Berendzen, J., Chu, K., Stock, A.M., Maves, S.A., Benson, D.E., Sweet, R.M., Ringe, D., Petsko, G.A., and Sligar, S.G. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615-1622.
    Schmitz, C., González Auza, L., Koberidze, D., Rasche, S., Fischer, R., and Bortesi, L. (2019). Conversion of chitin to defined chitosan oligomers: current status and future prospects. Marine drugs 17, 452.
    Sezutsu, H., Le Goff, G., and Feyereisen, R. (2013). Origins of P450 diversity. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120428.
    Shahidi, F., Arachchi, J.K.V., and Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in Food Dcience & Technology 10, 37-51.
    Sharples, S.C., Nguyen-Phan, T.C., and Fry, S.C. (2017). Xyloglucan endotransglucosylase/hydrolases (XTHs) are inactivated by binding to glass and cellulosic surfaces, and released in active form by a heat-stable polymer from cauliflower florets. Journal of Plant Physiology 218, 135-143.
    Vasav, A., and Barvkar, V. (2019). Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 20, 1-13.
    Villegas, M., Brodelius, P.E., and Kylin, A. (1990). Elicitor‐induced hydroxycinnamoyl‐CoA: tyramine hydroxycinnamoyltransferase in plant cell suspension cultures. Physiologia Plantarum 78, 414-420.
    Wakabayashi, T., Shida, K., Kitano, Y., Takikawa, H., Mizutani, M., and Sugimoto, Y. (2020). CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 251, 1-6.
    Wakabayashi, T., Ishiwa, S., Shida, K., Motonami, N., Suzuki, H., Takikawa, H., Mizutani, M., and Sugimoto, Y. (2021). Identification and characterization of sorgomol synthase in sorghum strigolactone biosynthesis. Plant Physiology 185, 902-913.
    Wakabayashi, T., Hamana, M., Mori, A., Akiyama, R., Ueno, K., Osakabe, K., Osakabe, Y., Suzuki, H., Takikawa, H., and Mizutani, M. (2019). Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances 5, eaax9067.
    Walker, C.H., Siu-Ting, K., Taylor, A., O’Connell, M.J., and Bennett, T. (2019). Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biology 17, 1-19.
    Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136-138.
    Wang, R., Lu, J., Xing, G., Gai, J., and Zhao, T. (2011). Molecular evolution of two consecutive carotenoid cleavage dioxygenase genes in strigolactone biosynthesis in plants. Genet. Mol. Res 10, 3664-3673.
    Wang, T., Song, Z., Wang, X., Xu, L., Sun, Q., and Li, L. (2018). Functional insights into the roles of hormones in the Dendrobium officinale-Tulasnella sp. germinated seed symbiotic association. International Journal of Molecular Sciences 19, 3484.
    Wang, Y., Durairaj, J., Duran, H.G.S., van Velzen, R., Flokova, K., Liao, C.-Y., Chojnacka, A., MacFarlane, S., Schranz, M.E., and Medema, M.H. (2022). The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol. New Phytologist 235, 1884-1899.
    Waters, M.T., Gutjahr, C., Bennett, T., and Nelson, D.C. (2017). Strigolactone signaling and evolution. Annual Review of Plant Biology 68, 291-322.
    Waters, M.T., Brewer, P.B., Bussell, J.D., Smith, S.M., and Beveridge, C.A. (2012). The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology 159, 1073-1085.
    Wu, S., Ma, X., Zhou, A., Valenzuela, A., Zhou, K., and Li, Y. (2021). Establishment of strigolactone-producing bacterium-yeast consortium. Science Advances 7, eabh4048.
    Wu, W.-L., Hsiao, Y.-Y., Lu, H.-C., Liang, C.-K., Fu, C.-H., Huang, T.-H., Chuang, M.-H., Chen, L.-J., Liu, Z.-J., and Tsai, W.-C. (2020). Expression regulation of MALATE SYNTHASE involved in glyoxylate cycle during protocorm development in Phalaenopsis aphrodite (Orchidaceae). Scientific Reports 10, 1-16.
    Xu, X., Jibran, R., Wang, Y., Dong, L., Flokova, K., Esfandiari, A., McLachlan, A.R., Heiser, A., Sutherland-Smith, A.J., and Brummell, D.A. (2021). Strigolactones regulate sepal senescence in Arabidopsis. Journal of Experimental Botany 72, 5462-5477.
    Ye, Q., Li, Y., Zhong, Z., Wu, L., Chen, L., and Li, M. (2018). Platanthera guangdongensis and P. zijinensis (Orchidaceae: Orchideae), two new species from China: evidence from morphological and molecular analyses. Phytotaxa 343, 201-213.
    Yeh, C.-M., Chung, K., Liang, C.-K., and Tsai, W.-C. (2019). New insights into the symbiotic relationship between orchids and fungi. Applied Sciences 9, 585.
    Yoneyama, K., and Brewer, P.B. (2021). Strigolactones, how are they synthesized to regulate plant growth and development? Current Opinion in Plant Biology 63, 102072.
    Yoneyama, K., Xie, X., Yoneyama, K., Kisugi, T., Nomura, T., Nakatani, Y., Akiyama, K., and McErlean, C.S. (2018a). Which are the major players, canonical or non-canonical strigolactones? Journal of Experimental Botany 69, 2231-2239.
    Yoneyama, K., Mori, N., Sato, T., Yoda, A., Xie, X., Okamoto, M., Iwanaga, M., Ohnishi, T., Nishiwaki, H., and Asami, T. (2018b). Conversion of carlactone to carlactonoic acid is a conserved function of MAX 1 homologs in strigolactone biosynthesis. New Phytologist 218, 1522-1533.
    Yuan, Y., Jin, X., Liu, J., Zhao, X., Zhou, J., Wang, X., Wang, D., Lai, C., Xu, W., and Huang, J. (2018). The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature Communications 9, 1-11.
    Zhang, G.-Q., Liu, K.-W., Li, Z., Lohaus, R., Hsiao, Y.-Y., Niu, S.-C., Wang, J.-Y., Lin, Y.-C., Xu, Q., and Chen, L.-J. (2017). The Apostasia genome and the evolution of orchids. Nature 549, 379-383.
    Zhang, Y., Zhang, G.-Q., Zhang, D., Liu, X.-D., Xu, X.-Y., Sun, W.-H., Yu, X., Zhu, X., Wang, Z.-W., and Zhao, X. (2021). Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Horticulture Research 8.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE