| 研究生: |
孔鴻仁 Kung, Hung-Jen |
|---|---|
| 論文名稱: |
以χ-Al2O3粉末製作mullite-alumina複合陶瓷 Mullite-alumina composite fabrication using χ-Al2O3 powders |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 共同指導教授: |
顏富士
Yen, Fu-Su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 富鋁紅柱石 、χ-Al2O3 、mullite-alumina 、硬度 |
| 外文關鍵詞: | mullite, χ-Al2O3, mullite-alumina, hardness |
| 相關次數: | 點閱:103 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以χ-Al2O3、α-Al2O3及cristobalite為原料,製作出高硬度之微米級晶粒的mullite-alumina複合陶瓷;Mullite-alumina所含之α-Al2O3,則分別用χ-Al2O3直接相轉換得到α-Al2O3(第A組),及用市售之α-Al2O3(第B組)。本實驗並對兩組mullite-alumina性質之差異進行比較。
實驗以χ-Al2O3與cristobalite依預定重量比混合,得到A組樣品;B組樣品則先由χ-Al2O3與cristobalite以計量比(71.8 wt% Al2O3 and 28.2 wt% SiO2)混合之富鋁紅柱石,再添入預定重量之α-Al2O3。兩組樣品先透過熱處理,使χ-Al2O3與cristobalite反應合成富鋁紅柱石,再提升溫度個別與χ-Al2O3及α-Al2O3進行燒結得到mullite-alumina複合陶瓷。
反應過程中,透過χ-Al2O3粒徑小、高比表面積之特性,富鋁紅柱石的生成溫度可提前至1250℃。A、B兩組樣品在1400℃持溫五小時後生成量皆達到90%以上。在1550℃作不同時間持溫,燒結的結果顯示:A組在持溫2至3小時便可接近收縮極限,B組樣品則需持溫到5小時;A組樣品在持溫2至3小時後,相對密度可達到95%以上,B組樣品則需持溫至10小時才能達到相對密度95%;經燒結後,A、B兩組樣品之D50粒徑皆在1μm附近,其中樣品χ11及α10擁有相對較大的晶粒。經硬度測試後,A組樣品硬度皆高於B組樣品,其中A組樣品氧化鋁含量與硬度成正比關係,B組樣品則呈現相反趨勢,顯示使用χ-Al2O3反應得到的陶瓷體硬度較高,且隨著χ-Al2O3含量增加,硬度、密度也隨之提高,唯獨Al2O3含量75wt%的樣品屬於特例。
經與前人文獻對比,本研究以χ-Al2O3進行反應,能以較低燒結溫度及較短持溫時間,得到硬度較高且晶粒粒徑較細之mullite-alumina複合陶瓷。
For synthesizing mullite-alumina composite ceramics with high hardness, χ-Al2O3、α-Al2O3 and cristobalite were used as raw materials, and the difference of alumina sources in mullite-alumina between transforming from χ-Al2O3 and using merchant alumina powders(AKP-30) were examined. Group A samples were prepared by mixing χ-Al2O3 and cristobalite with different weight ratio; Group B samples were prepared by mixing stoichiometric mullite (71.8wt% χ-Al2O3 and 28.2wt% cristobalite) and α-Al2O3 with different weight ratio. Green bodies were firstly heated up to 1400℃ for mullite reaction, then sintered at 1550℃ for varying time. By the characterization of χ-Al2O3, high specific area and small diameter lead to the advance of mullite formation temperature to 1250℃. The result show that group A is able to reach higher shrinkage rate and relative density in the same sintering time comparing with group B. Average grain size of both group A and B are approximately 1 μm. The hardness of group A tended to increase as the χ-Al2O3 content increase while the hardness of group B has opposite trend. It is indicated that using χ-Al2O3 as the alumina sources of mullite-alumina has higher hardness than using α-Al2O3.
Comparing with reference, mullite-alumina with high hardness and small grain size can be synthesizing by using χ-Al2O3 as raw materials leading to lower sintering temperature and shorter sintering time.
[1] K. O. H. Schneider, and J. A. Pask, Mullite and Mullite Ceramics. John Wiley & Sons, pp. 4-8, 1994.
[2] L. G. B. a. B. Mason, Mineralogy. W. H. Freeman and Company, 1978.
[3] H. Schneider, J. Schreuer, and B. Hildmann, "Structure and properties of mullite - A review," Journal of the European Ceramic Society, vol. 28, no. 2, pp. 329-344, 2008.
[4] H. Schneider, K. Okada, and J. A. Pask, Mullite and Mullite Ceramics. John Wiley & Sons, pp. 105-108, 1994.
[5] M. Ismail, Z. Nakai, and S. Somiya, "Microstructure and mechanical-properties of mullite prepared by the sol-gel method," J. Am. Ceram. Soc., vol. 70, no. 1, pp. C7-C8, Jan 1987.
[6] S. S. Sueyoshi and C. A. C. Soto, "Fine pure mullite powder by homogeneous precipitation," Journal of the European Ceramic Society, vol. 18, no. 9, pp. 1145-1152, 1998.
[7] M. Ocana, J. Sanz, T. Gonzalezcarreno, and C. J. Serna, "Spherical mullite particles prepared by hydrolysis of aerosols," J. Am. Ceram. Soc., vol. 76, no. 8, pp. 2081-2085, Aug 1993.
[8] I. A. Aksay, D. M. Dabbs, and M. Sarikaya, "Mullite for structural, electronic, and optical applications," J. Am. Ceram. Soc., vol. 74, no. 10, pp. 2343-2358, Oct 1991.
[9] Y. Hirata, S. Matsushita, Y. Ishihara, and H. Katsuki, "Colloidal processing and mechanical properties of whisker-reinforced mullite matrix composites," J. Am. Ceram. Soc., vol. 74, no. 10, pp. 2438-2442, Oct 1991.
[10] F. M. Wahl, R. E. Grim, and R. B. Graf, "Phase transformation in silica-alumina mixtures as examined by continuous X-ray diffraction," Am. Miner., vol. 46, no. 9-10, pp. 1064-1076, 1961.
[11] M. Schmucker, W. Albers, and H. Schneider, "Mullite formation by reaction sintering of quartz and alpha-Al2O3 - A TEM study," Journal of the European Ceramic Society, vol. 14, no. 6, pp. 511-515, 1994.
[12] S. H. Risbud and J. A. Pask, "Mullite crystallization from SiO2-Al2O3 melts," J. Am. Ceram. Soc., vol. 61, no. 1-2, pp. 63-67, 1978.
[13] L. B. Pankratz, W. W. Weller, and K. K. Kelley, Low-temperature heat capacity and high-temperature heat content of mullite. U.S. Department of the Interior. Bureau of Mines, 1963.
[14] W. D. K. H. K. B. D. R. Uhlmann, Introduction to Ceramics, 2nd Edition. John Wiley & Sons, 1976.
[15] T. C. a. P. D. D. R. P. Boch, Mullite and Mullite Matrix Composites. American Ceramic Society, 1990.
[16] S. M. Johnson and J. A. Pask, "Role of impurities on formation of mullite from kaolinite and Al2O3-SiO2 mixtures," Am. Ceram. Soc. Bull., vol. 61, no. 8, pp. 838-842, 1982.
[17] A. Priya, S. Nath, K. Biswas, and B. Basu, "In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid," Journal of Materials Science-Materials in Medicine, vol. 21, no. 6, pp. 1817-1828, Jun 2010.
[18] K. K. Chawla, "Interface engineering in mullite fiber/mullite matrix composites," Journal of the European Ceramic Society, vol. 28, no. 2, pp. 447-453, 2008.
[19] G. Di Girolamo, C. Blasi, L. Pilloni, and M. Schioppa, "Microstructural and thermal properties of plasma sprayed mullite coatings," Ceram. Int., vol. 36, no. 4, pp. 1389-1395, May 2010.
[20] J. Anggono and B. Derby, "Pyrolysis of aluminium loaded polymethylsiloxanes: the influence of Al/PMS ratio on mullite formation," J. Mater. Sci., vol. 45, no. 1, pp. 233-241, Jan 2010.
[21] Z. D. Zheng, Y. L. Liu, and T. W. Coyle, "Fracture-resistance of a silicon-carbide platelet reinforced alumina composite," Can. Ceram. Q.-J. Can. Ceram. Soc., vol. 61, no. 4, pp. 249-254, Nov 1992.
[22] S. A. Baldacim, C. A. A. Cairo, and C. R. M. Silva, "Mechanical properties of ceramic composites," Journal of Materials Processing Technology, vol. 119, no. 1, pp. 273-276, 2001/12/20/ 2001.
[23] M. W. Lindley and D. J. Godfrey, "Silicon nitride ceramic cComposites with high toughness," Nature, vol. 229, no. 5281, pp. 192-&, 1971.
[24] Y. S. Chou and D. J. Green, "Processing and mechanical properties of a silicon carbide platelet/alumina matrix composite," Journal of the European Ceramic Society, vol. 14, no. 4, pp. 303-311, 1994/01/01/ 1994.
[25] J. Liu, H. X. Yan, and K. Jiang, "Mechanical properties of graphene platelet-reinforced alumina ceramic composites," Ceram. Int., vol. 39, no. 6, pp. 6215-6221, Aug 2013.
[26] O. N. Grigoriev, B. A. Galanov, V. A. Kotenko, S. M. Ivanov, A. V. Koroteev, and N. P. Brodnikovsky, "Mechanical properties of ZrB2-SiC(ZrSi2) ceramics," Journal of the European Ceramic Society, vol. 30, no. 11, pp. 2173-2181, Aug 2010.
[27] B. B. Fan, W. Li, B. Z. Dai, K. K. Guan, R. Zhang, and H. X. Li, "Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering," Processing and Application of Ceramics, vol. 10, no. 4, pp. 243-248, 2016.
[28] Y. X. Huang, A. M. R. Senos, and J. L. Baptista, "Thermal and mechanical properties of aluminum titanate-mullite composites," Journal of Materials Research, vol. 15, no. 2, pp. 357-363, Feb 2000.
[29] H. Liu, Q. Ma, and W. Liu, "Mechanical and oxidation resistance properties of 3D carbon fiber-reinforced mullite matrix composites prepared by sol–gel process," Ceram. Int., vol. 40, no. 5, pp. 7203-7212, 2014/06/01/ 2014.
[30] D. A. Rani, D. D. Jayaseelan, T. Nishikawa, and H. Awaji, "Pressureless sintering of mullite/Mo composites," J. Ceram. Soc. Jpn., vol. 109, no. 3, pp. 274-277, Mar 2001.
[31] M. Holmström, T. Chartier, and P. Boch, "Reaction-sintered ZrO2-mullite composites," Materials Science and Engineering: A, vol. 109, pp. 105-109, 1989/03/01/ 1989.
[32] R. F. D. a. J. A. Pask, Mullite. Acedemic Press, pp. 37-76, 1971.
[33] B. L. Metcalfe and J. H. Sant, "Synthesis, microstructure and physical properties of high purity mullite," Transactions and Journal of the British Ceramic Society, vol. 74, no. 6, pp. 193-201, 1975.
[34] M. L. Sheppard, "Better ceramics through chemistry," Materials Engineering pp. 45-52, 1984.
[35] H. W. L. a. J. A. P. M. D. Sacks, Mullite and Mullite Composites. The American Ceramic Society, Inc., pp. 167-207, 1990.
[36] F. C. Zhang, H. H. Luo, and S. G. Roberts, "Mechanical properties and microstructure of Al2O3/mullite composite," J. Mater. Sci., vol. 42, no. 16, pp. 6798-6802, Aug 2007.
[37] A. V. Maldhure, H. S. Tripathi, and A. Ghosh, "Mechanical properties of mullite-corundum composites prepared from bauxite," Int. J. Appl. Ceram. Technol., vol. 12, no. 4, pp. 860-866, Jul-Aug 2015.
[38] C. Sadik, I.-E. El Amrani, and A. Albizane, "Recent advances in silica-alumina refractory: A review," Journal of Asian Ceramic Societies, vol. 2, no. 2, pp. 83-96, 2014/06/01/ 2014.
[39] G. W. Brindley and J. O. Choe, "The reaction series, gibbsite- chi alumina- kappa alumina- corundum," Am. Miner., vol. 46, no. 7-8, pp. 771-785, 1961.
[40] G. W. Brindley, "The reaction series, gibbsite- chi alumina- kappa alumina- corundum 2," Am. Miner., vol. 46, no. 9-10, pp. 1187-1190, 1961.
[41] O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, "Phase transformation behavior of nanocrystalline χ-alumina powder obtained by thermal decomposition of AIP in inert organic solvent," J. Mater. Sci., vol. 39, no. 7, pp. 2417-2421, 2004/04/01 2004.
[42] O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, and P. Praserthdam, "Preparation and phase transformation behavior of χ-alumina via solvothermal synthesis," Mater. Chem. Phys., vol. 100, no. 2, pp. 445-450, 2006/12/10/ 2006.
[43] O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, "Synthesis of thermally stable micro spherical χ-alumina by thermal decomposition of aluminum isopropoxide in mineral oil," Inorganic Chemistry Communications, vol. 6, no. 7, pp. 930-934, 2003/07/01/ 2003.
[44] O. Mekasuwandumrong, H. Kominami, P. Praserthdam, and M. Inoue, "Synthesis of Thermally Stable χ-Alumina by Thermal Decomposition of Aluminum Isopropoxide in Toluene," J. Am. Ceram. Soc., vol. 87, no. 8, pp. 1543-1549, 2004.
[45] M. Inoue, H. Kominami, and T. Inui, "Thermal Transformation of X-Alumina Formed by Thermal Decomposition of Aluminum Alkoxide in Organic Media," J. Am. Ceram. Soc., vol. 75, no. 9, pp. 2597-2598, 1992.
[46] 游佩青, 陳芝亦, 鎖培如及顏富士, "數位噴墨印刷亮面塗層紙之χ-氧化鋁塗層漿料的開發," 鑛冶:中國鑛冶工程學會會刊, vol. 55, no. 1, pp. 45-50, 2011.
[47] P. C. Yu, C. I. Chen, F. S. Yen, D. T. Ray and S. C. M. Yen, "Examination of the Dye-Fixing Ability of Porous -Alumina Flake Powders," J. Am. Ceram. Soc., vol. 96, no. 4, pp. 1118-1123, Apr 2013.
[48] W. Chaitree, S. Jiemsirilers, O. Mekasuwandumrong, B. Jongsomjit, A. Shotipruk, and J. Panpranot, "Effect of nanocrystalline chi-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogenation," Catalysis Today, vol. 164, no. 1, pp. 302-307, Apr 2011.
[49] C. Vleephoka, C. Chaisuk, P. Samparnpiboon, and P. Praserthdam, "Effect of phase composition between nano gamma- and chi-Al2O3 on Pt/Al2O3 catalyst in CO oxidation," Catalysis Communications, vol. 9, no. 4, pp. 546-550, Mar 2008.
[50] D. A. Nazimov et al., "The Effect of Transition Alumina (gamma-, eta-, chi-Al2O3) on the Activity and Stability of Chromia/Alumina Catalysts. Part II: Industrial-Like Catalysts and Real Plant Aging Conditions," Energy Technology, vol. 7, no. 4, Apr 2019, Art no. 1800736.
[51] S. Imamura, T. Kitao, H. Sasaki, and K. Utani, "Properties of chi-alumina as related to catalysis," Reaction Kinetics and Catalysis Letters, vol. 55, no. 1, pp. 19-24, Apr 1995.
[52] J. M. Rivas Mercury, A. H. De Aza, and P. Pena, "Synthesis of CaAl2O4 from powders: Particle size effect," Journal of the European Ceramic Society, vol. 25, no. 14, pp. 3269-3279, 2005/09/01/ 2005.
[53] J. R. González-Velasco, R. Ferret, R. López-Fonseca, and M. A. Gutiérrez-Ortiz, "Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction," Powder Technology, vol. 153, no. 1, pp. 34-42, 2005/05/03/ 2005.
[54] A. Putnis, An Introduction to Mineral Sciences. Cambridge University Press, 1992.
[55] D. D. W. E. Brown, and A. K. Galway, Reactions in the solid state. Elsevier/North-Holland Inc., p. 78, 1980.
[56] G. Z. Ruan, Z. H. Zhang, and M. Q. Yin, "Effect of SiO2 micro powder on properties of corundum-mullite composites," Rare Metals, vol. 30, pp. 506-510, Mar 2011.
[57] B. Saruhan, W. Albers, H. Schneider, and W. A. Kaysser, "Reaction and sintering mechanisms of mullite in the systems cristobalite/α-Al2O3 and amorphous SiO2/α-Al2O3," Journal of the European Ceramic Society, vol. 16, no. 10, pp. 1075-1081, 1996/01/01/ 1996.
[58] A. P. S. Rana, O. Aiko, and J. A. Pask, "Sintering of α-Al2O3/quartz, and α-Al2O3/cristobalite related to mullite formation," Ceram. Int., vol. 8, no. 4, pp. 151-153, 1982/10/01/ 1982.
[59] P. C. Yu, Y. W. Tsai, F. S. Yen, W. P. Yang, and C. L. Huang, "Thermal characteristic difference between alpha-Al2O3 and cristobalite powders during mullite synthesis induced by size reduction," Journal of the European Ceramic Society, vol. 35, no. 2, pp. 673-680, Feb 2015.
[60] P. C. Yu, Y. W. Tsai, F. S. Yen, and C. L. Huang, "Thermal Reaction of Cristobalite in Nano-SiO2/alpha-Al2O3 Powder Systems for Mullite Synthesis," J. Am. Ceram. Soc., vol. 97, no. 8, pp. 2431-2438, Aug 2014.
[61] L. M. Huang and M. S. El-Genk, "Thermal conductivity measurements of alumina powders and molded Min-K in vacuum," Energy Conversion and Management, vol. 42, no. 5, pp. 599-612, Mar 2001.
[62] P. D. D. Rodrigo and P. Boch, "High purity mullite ceramics by reaction sintering," International Journal of High Technology Ceramics, vol. 1, no. 1, pp. 3-30, 1985/01/01/ 1985.
[63] T. Koyama, A. Nishiyama, and K. Niihara, "Effect of grain morphology and grain size on the mechanical properties of AI203 ceramics," J. Mater. Sci., vol. 29, no. 15, pp. 3949-3954, Aug 1994.
[64] M. Trunec, "Effect of Grain Size on Mechanical Properties of 3Y-TZP Ceramics," Ceramics - Silikaty, vol. 52, pp. 165-171, 01/01 2008.
[65] T. Miyoshi and H. Funakubo, "Effect of Grain Size on Mechanical Properties of Full-Dense Pb(Zr,Ti)O-3 Ceramics," Japanese Journal of Applied Physics, vol. 49, no. 9, 2010, Art no. 09md13.
[66] N. Claussen, B. Mussler, and M. V. Swain, "Grain-Size Dependence of Fracture Energy in Ceramics," J. Am. Ceram. Soc., vol. 65, no. 1, pp. C‐14-C‐16, 1982.
[67] R. W. Rice, C. C. Wu, and F. Boichelt, "Hardness–Grain-Size Relations in Ceramics," J. Am. Ceram. Soc., vol. 77, no. 10, pp. 2539-2553, 1994.
[68] R. W. Rice, "STRENGTH-GRAIN SIZE BEHAVIOR OF ZRO2 AT ROOM-TEMPERATURE," Journal of Materials Science Letters, vol. 13, no. 19, pp. 1408-1412, Oct 1994.
[69] R. W. Rice, "Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C," J. Mater. Sci., vol. 31, no. 8, pp. 1969-1983, 1996/04/01 1996.
[70] H. M. Ohnishi, K., T. Nakamura, and T. Kawanami, "High Temperature Mechanical Properties of Mullite Ceramics," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 605-612.
[71] M. D. Sacks and H.-W. Lee, "A review of powder preparation methods and densification procedures for fabricating high density mullite," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 167-207.
[72] T. Sato, M. Ishizuka, and M. Shimada, "Sintering and characterization of mullite—Alumina composites," Ceram. Int., vol. 12, no. 2, pp. 61-65, 1986/01/01/ 1986.
[73] M. G. M. U. Ismail and Z. Nakai, "Sintering of mullite prepared by sol-gel method," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 231-241.
[74] M. D. SACKS and J. A. PASK, "Sintering of Mullite-Containing Materials: I, Effect of Composition," J. Am. Ceram. Soc., vol. 65, no. 2, pp. 65-70, 1982.
[75] M. D. Stuart, "Characterization and mechanical behavior of alumina-mullite ceramics," 1991.