簡易檢索 / 詳目顯示

研究生: 孔鴻仁
Kung, Hung-Jen
論文名稱: 以χ-Al2O3粉末製作mullite-alumina複合陶瓷
Mullite-alumina composite fabrication using χ-Al2O3 powders
指導教授: 向性一
Hsiang, Hsing-I
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 富鋁紅柱石χ-Al2O3mullite-alumina硬度
外文關鍵詞: mullite, χ-Al2O3, mullite-alumina, hardness
相關次數: 點閱:103下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以χ-Al2O3、α-Al2O3及cristobalite為原料,製作出高硬度之微米級晶粒的mullite-alumina複合陶瓷;Mullite-alumina所含之α-Al2O3,則分別用χ-Al2O3直接相轉換得到α-Al2O3(第A組),及用市售之α-Al2O3(第B組)。本實驗並對兩組mullite-alumina性質之差異進行比較。
    實驗以χ-Al2O3與cristobalite依預定重量比混合,得到A組樣品;B組樣品則先由χ-Al2O3與cristobalite以計量比(71.8 wt% Al2O3 and 28.2 wt% SiO2)混合之富鋁紅柱石,再添入預定重量之α-Al2O3。兩組樣品先透過熱處理,使χ-Al2O3與cristobalite反應合成富鋁紅柱石,再提升溫度個別與χ-Al2O3及α-Al2O3進行燒結得到mullite-alumina複合陶瓷。
    反應過程中,透過χ-Al2O3粒徑小、高比表面積之特性,富鋁紅柱石的生成溫度可提前至1250℃。A、B兩組樣品在1400℃持溫五小時後生成量皆達到90%以上。在1550℃作不同時間持溫,燒結的結果顯示:A組在持溫2至3小時便可接近收縮極限,B組樣品則需持溫到5小時;A組樣品在持溫2至3小時後,相對密度可達到95%以上,B組樣品則需持溫至10小時才能達到相對密度95%;經燒結後,A、B兩組樣品之D50粒徑皆在1μm附近,其中樣品χ11及α10擁有相對較大的晶粒。經硬度測試後,A組樣品硬度皆高於B組樣品,其中A組樣品氧化鋁含量與硬度成正比關係,B組樣品則呈現相反趨勢,顯示使用χ-Al2O3反應得到的陶瓷體硬度較高,且隨著χ-Al2O3含量增加,硬度、密度也隨之提高,唯獨Al2O3含量75wt%的樣品屬於特例。
    經與前人文獻對比,本研究以χ-Al2O3進行反應,能以較低燒結溫度及較短持溫時間,得到硬度較高且晶粒粒徑較細之mullite-alumina複合陶瓷。

    For synthesizing mullite-alumina composite ceramics with high hardness, χ-Al2O3、α-Al2O3 and cristobalite were used as raw materials, and the difference of alumina sources in mullite-alumina between transforming from χ-Al2O3 and using merchant alumina powders(AKP-30) were examined. Group A samples were prepared by mixing χ-Al2O3 and cristobalite with different weight ratio; Group B samples were prepared by mixing stoichiometric mullite (71.8wt% χ-Al2O3 and 28.2wt% cristobalite) and α-Al2O3 with different weight ratio. Green bodies were firstly heated up to 1400℃ for mullite reaction, then sintered at 1550℃ for varying time. By the characterization of χ-Al2O3, high specific area and small diameter lead to the advance of mullite formation temperature to 1250℃. The result show that group A is able to reach higher shrinkage rate and relative density in the same sintering time comparing with group B. Average grain size of both group A and B are approximately 1 μm. The hardness of group A tended to increase as the χ-Al2O3 content increase while the hardness of group B has opposite trend. It is indicated that using χ-Al2O3 as the alumina sources of mullite-alumina has higher hardness than using α-Al2O3.
    Comparing with reference, mullite-alumina with high hardness and small grain size can be synthesizing by using χ-Al2O3 as raw materials leading to lower sintering temperature and shorter sintering time.

    摘要 I Mullite-alumina composite fabrication using χ-Al2O3 powders III 致謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 前言 1 1.1 富鋁紅柱石簡介 1 1.2 研究動機與目的 2 第二章 前人文獻 3 2.1 複合材料 3 2.1.1 陶瓷複合材料 3 2.1.2 富鋁紅柱石複合陶瓷 4 2.1.3 使用χ-Al2O3之因素 5 2.2 富鋁紅柱石及富鋁紅柱石-氧化鋁複合材料 6 2.2.1 富鋁紅柱石之生成 6 2.2.2 富鋁紅柱石-氧化鋁複合材料 7 2.2.3 氧化鋁來源及氧化矽來源 7 2.2.3.1 氧化鋁來源 7 2.2.3.2 氧化矽來源 8 第三章 實驗步驟 9 3.1 原料處理 9 3.1.1 原料粉末處理 9 3.1.2 配方原料製備-兩種原料Al2O3來源的添加 12 3.2 熱處理 13 3.2.1 第一階段mullite合成 13 3.2.2 第二階段mullite-alumina製作 13 3.3 特性分析 14 3.3.1 粒徑分布儀 14 3.3.2 熱差分析 14 3.3.3 結晶相分析 14 3.3.4 結晶相含量分析 14 3.3.5 顯微結構分析 14 3.3.6 Feret diameter統計 15 3.3.7 燒結體密度 15 3.3.8 燒結體硬度 15 第四章 結果與討論 17 4.1 配方熱行為 17 4.1.1 DTA 17 4.1.2 生成相分析 18 4.1.3 富鋁紅柱石生成量 22 4.2 Mullite-alumina製作 26 4.2.1 燒結 26 4.2.1.1 收縮率 26 4.2.1.2 密度 28 4.2.1.3 Grain size 33 4.3 硬度測試 37 4.3.1 硬度與氧化鋁比例 37 4.3.2 硬度與密度 38 4.3.3 硬度與收縮率 40 4.4 數據比較 41 4.4.1 A組與B組樣品差異 41 4.4.2 文獻比較 41 第五章 結論 44 參考文獻 45 附錄 54

    [1] K. O. H. Schneider, and J. A. Pask, Mullite and Mullite Ceramics. John Wiley & Sons, pp. 4-8, 1994.
    [2] L. G. B. a. B. Mason, Mineralogy. W. H. Freeman and Company, 1978.
    [3] H. Schneider, J. Schreuer, and B. Hildmann, "Structure and properties of mullite - A review," Journal of the European Ceramic Society, vol. 28, no. 2, pp. 329-344, 2008.
    [4] H. Schneider, K. Okada, and J. A. Pask, Mullite and Mullite Ceramics. John Wiley & Sons, pp. 105-108, 1994.
    [5] M. Ismail, Z. Nakai, and S. Somiya, "Microstructure and mechanical-properties of mullite prepared by the sol-gel method," J. Am. Ceram. Soc., vol. 70, no. 1, pp. C7-C8, Jan 1987.
    [6] S. S. Sueyoshi and C. A. C. Soto, "Fine pure mullite powder by homogeneous precipitation," Journal of the European Ceramic Society, vol. 18, no. 9, pp. 1145-1152, 1998.
    [7] M. Ocana, J. Sanz, T. Gonzalezcarreno, and C. J. Serna, "Spherical mullite particles prepared by hydrolysis of aerosols," J. Am. Ceram. Soc., vol. 76, no. 8, pp. 2081-2085, Aug 1993.
    [8] I. A. Aksay, D. M. Dabbs, and M. Sarikaya, "Mullite for structural, electronic, and optical applications," J. Am. Ceram. Soc., vol. 74, no. 10, pp. 2343-2358, Oct 1991.
    [9] Y. Hirata, S. Matsushita, Y. Ishihara, and H. Katsuki, "Colloidal processing and mechanical properties of whisker-reinforced mullite matrix composites," J. Am. Ceram. Soc., vol. 74, no. 10, pp. 2438-2442, Oct 1991.
    [10] F. M. Wahl, R. E. Grim, and R. B. Graf, "Phase transformation in silica-alumina mixtures as examined by continuous X-ray diffraction," Am. Miner., vol. 46, no. 9-10, pp. 1064-1076, 1961.
    [11] M. Schmucker, W. Albers, and H. Schneider, "Mullite formation by reaction sintering of quartz and alpha-Al2O3 - A TEM study," Journal of the European Ceramic Society, vol. 14, no. 6, pp. 511-515, 1994.
    [12] S. H. Risbud and J. A. Pask, "Mullite crystallization from SiO2-Al2O3 melts," J. Am. Ceram. Soc., vol. 61, no. 1-2, pp. 63-67, 1978.
    [13] L. B. Pankratz, W. W. Weller, and K. K. Kelley, Low-temperature heat capacity and high-temperature heat content of mullite. U.S. Department of the Interior. Bureau of Mines, 1963.
    [14] W. D. K. H. K. B. D. R. Uhlmann, Introduction to Ceramics, 2nd Edition. John Wiley & Sons, 1976.
    [15] T. C. a. P. D. D. R. P. Boch, Mullite and Mullite Matrix Composites. American Ceramic Society, 1990.
    [16] S. M. Johnson and J. A. Pask, "Role of impurities on formation of mullite from kaolinite and Al2O3-SiO2 mixtures," Am. Ceram. Soc. Bull., vol. 61, no. 8, pp. 838-842, 1982.
    [17] A. Priya, S. Nath, K. Biswas, and B. Basu, "In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid," Journal of Materials Science-Materials in Medicine, vol. 21, no. 6, pp. 1817-1828, Jun 2010.
    [18] K. K. Chawla, "Interface engineering in mullite fiber/mullite matrix composites," Journal of the European Ceramic Society, vol. 28, no. 2, pp. 447-453, 2008.
    [19] G. Di Girolamo, C. Blasi, L. Pilloni, and M. Schioppa, "Microstructural and thermal properties of plasma sprayed mullite coatings," Ceram. Int., vol. 36, no. 4, pp. 1389-1395, May 2010.
    [20] J. Anggono and B. Derby, "Pyrolysis of aluminium loaded polymethylsiloxanes: the influence of Al/PMS ratio on mullite formation," J. Mater. Sci., vol. 45, no. 1, pp. 233-241, Jan 2010.
    [21] Z. D. Zheng, Y. L. Liu, and T. W. Coyle, "Fracture-resistance of a silicon-carbide platelet reinforced alumina composite," Can. Ceram. Q.-J. Can. Ceram. Soc., vol. 61, no. 4, pp. 249-254, Nov 1992.
    [22] S. A. Baldacim, C. A. A. Cairo, and C. R. M. Silva, "Mechanical properties of ceramic composites," Journal of Materials Processing Technology, vol. 119, no. 1, pp. 273-276, 2001/12/20/ 2001.
    [23] M. W. Lindley and D. J. Godfrey, "Silicon nitride ceramic cComposites with high toughness," Nature, vol. 229, no. 5281, pp. 192-&, 1971.
    [24] Y. S. Chou and D. J. Green, "Processing and mechanical properties of a silicon carbide platelet/alumina matrix composite," Journal of the European Ceramic Society, vol. 14, no. 4, pp. 303-311, 1994/01/01/ 1994.
    [25] J. Liu, H. X. Yan, and K. Jiang, "Mechanical properties of graphene platelet-reinforced alumina ceramic composites," Ceram. Int., vol. 39, no. 6, pp. 6215-6221, Aug 2013.
    [26] O. N. Grigoriev, B. A. Galanov, V. A. Kotenko, S. M. Ivanov, A. V. Koroteev, and N. P. Brodnikovsky, "Mechanical properties of ZrB2-SiC(ZrSi2) ceramics," Journal of the European Ceramic Society, vol. 30, no. 11, pp. 2173-2181, Aug 2010.
    [27] B. B. Fan, W. Li, B. Z. Dai, K. K. Guan, R. Zhang, and H. X. Li, "Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering," Processing and Application of Ceramics, vol. 10, no. 4, pp. 243-248, 2016.
    [28] Y. X. Huang, A. M. R. Senos, and J. L. Baptista, "Thermal and mechanical properties of aluminum titanate-mullite composites," Journal of Materials Research, vol. 15, no. 2, pp. 357-363, Feb 2000.
    [29] H. Liu, Q. Ma, and W. Liu, "Mechanical and oxidation resistance properties of 3D carbon fiber-reinforced mullite matrix composites prepared by sol–gel process," Ceram. Int., vol. 40, no. 5, pp. 7203-7212, 2014/06/01/ 2014.
    [30] D. A. Rani, D. D. Jayaseelan, T. Nishikawa, and H. Awaji, "Pressureless sintering of mullite/Mo composites," J. Ceram. Soc. Jpn., vol. 109, no. 3, pp. 274-277, Mar 2001.
    [31] M. Holmström, T. Chartier, and P. Boch, "Reaction-sintered ZrO2-mullite composites," Materials Science and Engineering: A, vol. 109, pp. 105-109, 1989/03/01/ 1989.
    [32] R. F. D. a. J. A. Pask, Mullite. Acedemic Press, pp. 37-76, 1971.
    [33] B. L. Metcalfe and J. H. Sant, "Synthesis, microstructure and physical properties of high purity mullite," Transactions and Journal of the British Ceramic Society, vol. 74, no. 6, pp. 193-201, 1975.
    [34] M. L. Sheppard, "Better ceramics through chemistry," Materials Engineering pp. 45-52, 1984.
    [35] H. W. L. a. J. A. P. M. D. Sacks, Mullite and Mullite Composites. The American Ceramic Society, Inc., pp. 167-207, 1990.
    [36] F. C. Zhang, H. H. Luo, and S. G. Roberts, "Mechanical properties and microstructure of Al2O3/mullite composite," J. Mater. Sci., vol. 42, no. 16, pp. 6798-6802, Aug 2007.
    [37] A. V. Maldhure, H. S. Tripathi, and A. Ghosh, "Mechanical properties of mullite-corundum composites prepared from bauxite," Int. J. Appl. Ceram. Technol., vol. 12, no. 4, pp. 860-866, Jul-Aug 2015.
    [38] C. Sadik, I.-E. El Amrani, and A. Albizane, "Recent advances in silica-alumina refractory: A review," Journal of Asian Ceramic Societies, vol. 2, no. 2, pp. 83-96, 2014/06/01/ 2014.
    [39] G. W. Brindley and J. O. Choe, "The reaction series, gibbsite- chi alumina- kappa alumina- corundum," Am. Miner., vol. 46, no. 7-8, pp. 771-785, 1961.
    [40] G. W. Brindley, "The reaction series, gibbsite- chi alumina- kappa alumina- corundum 2," Am. Miner., vol. 46, no. 9-10, pp. 1187-1190, 1961.
    [41] O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, "Phase transformation behavior of nanocrystalline χ-alumina powder obtained by thermal decomposition of AIP in inert organic solvent," J. Mater. Sci., vol. 39, no. 7, pp. 2417-2421, 2004/04/01 2004.
    [42] O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, and P. Praserthdam, "Preparation and phase transformation behavior of χ-alumina via solvothermal synthesis," Mater. Chem. Phys., vol. 100, no. 2, pp. 445-450, 2006/12/10/ 2006.
    [43] O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, "Synthesis of thermally stable micro spherical χ-alumina by thermal decomposition of aluminum isopropoxide in mineral oil," Inorganic Chemistry Communications, vol. 6, no. 7, pp. 930-934, 2003/07/01/ 2003.
    [44] O. Mekasuwandumrong, H. Kominami, P. Praserthdam, and M. Inoue, "Synthesis of Thermally Stable χ-Alumina by Thermal Decomposition of Aluminum Isopropoxide in Toluene," J. Am. Ceram. Soc., vol. 87, no. 8, pp. 1543-1549, 2004.
    [45] M. Inoue, H. Kominami, and T. Inui, "Thermal Transformation of X-Alumina Formed by Thermal Decomposition of Aluminum Alkoxide in Organic Media," J. Am. Ceram. Soc., vol. 75, no. 9, pp. 2597-2598, 1992.
    [46] 游佩青, 陳芝亦, 鎖培如及顏富士, "數位噴墨印刷亮面塗層紙之χ-氧化鋁塗層漿料的開發," 鑛冶:中國鑛冶工程學會會刊, vol. 55, no. 1, pp. 45-50, 2011.
    [47] P. C. Yu, C. I. Chen, F. S. Yen, D. T. Ray and S. C. M. Yen, "Examination of the Dye-Fixing Ability of Porous -Alumina Flake Powders," J. Am. Ceram. Soc., vol. 96, no. 4, pp. 1118-1123, Apr 2013.
    [48] W. Chaitree, S. Jiemsirilers, O. Mekasuwandumrong, B. Jongsomjit, A. Shotipruk, and J. Panpranot, "Effect of nanocrystalline chi-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogenation," Catalysis Today, vol. 164, no. 1, pp. 302-307, Apr 2011.
    [49] C. Vleephoka, C. Chaisuk, P. Samparnpiboon, and P. Praserthdam, "Effect of phase composition between nano gamma- and chi-Al2O3 on Pt/Al2O3 catalyst in CO oxidation," Catalysis Communications, vol. 9, no. 4, pp. 546-550, Mar 2008.
    [50] D. A. Nazimov et al., "The Effect of Transition Alumina (gamma-, eta-, chi-Al2O3) on the Activity and Stability of Chromia/Alumina Catalysts. Part II: Industrial-Like Catalysts and Real Plant Aging Conditions," Energy Technology, vol. 7, no. 4, Apr 2019, Art no. 1800736.
    [51] S. Imamura, T. Kitao, H. Sasaki, and K. Utani, "Properties of chi-alumina as related to catalysis," Reaction Kinetics and Catalysis Letters, vol. 55, no. 1, pp. 19-24, Apr 1995.
    [52] J. M. Rivas Mercury, A. H. De Aza, and P. Pena, "Synthesis of CaAl2O4 from powders: Particle size effect," Journal of the European Ceramic Society, vol. 25, no. 14, pp. 3269-3279, 2005/09/01/ 2005.
    [53] J. R. González-Velasco, R. Ferret, R. López-Fonseca, and M. A. Gutiérrez-Ortiz, "Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction," Powder Technology, vol. 153, no. 1, pp. 34-42, 2005/05/03/ 2005.
    [54] A. Putnis, An Introduction to Mineral Sciences. Cambridge University Press, 1992.
    [55] D. D. W. E. Brown, and A. K. Galway, Reactions in the solid state. Elsevier/North-Holland Inc., p. 78, 1980.
    [56] G. Z. Ruan, Z. H. Zhang, and M. Q. Yin, "Effect of SiO2 micro powder on properties of corundum-mullite composites," Rare Metals, vol. 30, pp. 506-510, Mar 2011.
    [57] B. Saruhan, W. Albers, H. Schneider, and W. A. Kaysser, "Reaction and sintering mechanisms of mullite in the systems cristobalite/α-Al2O3 and amorphous SiO2/α-Al2O3," Journal of the European Ceramic Society, vol. 16, no. 10, pp. 1075-1081, 1996/01/01/ 1996.
    [58] A. P. S. Rana, O. Aiko, and J. A. Pask, "Sintering of α-Al2O3/quartz, and α-Al2O3/cristobalite related to mullite formation," Ceram. Int., vol. 8, no. 4, pp. 151-153, 1982/10/01/ 1982.
    [59] P. C. Yu, Y. W. Tsai, F. S. Yen, W. P. Yang, and C. L. Huang, "Thermal characteristic difference between alpha-Al2O3 and cristobalite powders during mullite synthesis induced by size reduction," Journal of the European Ceramic Society, vol. 35, no. 2, pp. 673-680, Feb 2015.
    [60] P. C. Yu, Y. W. Tsai, F. S. Yen, and C. L. Huang, "Thermal Reaction of Cristobalite in Nano-SiO2/alpha-Al2O3 Powder Systems for Mullite Synthesis," J. Am. Ceram. Soc., vol. 97, no. 8, pp. 2431-2438, Aug 2014.
    [61] L. M. Huang and M. S. El-Genk, "Thermal conductivity measurements of alumina powders and molded Min-K in vacuum," Energy Conversion and Management, vol. 42, no. 5, pp. 599-612, Mar 2001.
    [62] P. D. D. Rodrigo and P. Boch, "High purity mullite ceramics by reaction sintering," International Journal of High Technology Ceramics, vol. 1, no. 1, pp. 3-30, 1985/01/01/ 1985.
    [63] T. Koyama, A. Nishiyama, and K. Niihara, "Effect of grain morphology and grain size on the mechanical properties of AI203 ceramics," J. Mater. Sci., vol. 29, no. 15, pp. 3949-3954, Aug 1994.
    [64] M. Trunec, "Effect of Grain Size on Mechanical Properties of 3Y-TZP Ceramics," Ceramics - Silikaty, vol. 52, pp. 165-171, 01/01 2008.
    [65] T. Miyoshi and H. Funakubo, "Effect of Grain Size on Mechanical Properties of Full-Dense Pb(Zr,Ti)O-3 Ceramics," Japanese Journal of Applied Physics, vol. 49, no. 9, 2010, Art no. 09md13.
    [66] N. Claussen, B. Mussler, and M. V. Swain, "Grain-Size Dependence of Fracture Energy in Ceramics," J. Am. Ceram. Soc., vol. 65, no. 1, pp. C‐14-C‐16, 1982.
    [67] R. W. Rice, C. C. Wu, and F. Boichelt, "Hardness–Grain-Size Relations in Ceramics," J. Am. Ceram. Soc., vol. 77, no. 10, pp. 2539-2553, 1994.
    [68] R. W. Rice, "STRENGTH-GRAIN SIZE BEHAVIOR OF ZRO2 AT ROOM-TEMPERATURE," Journal of Materials Science Letters, vol. 13, no. 19, pp. 1408-1412, Oct 1994.
    [69] R. W. Rice, "Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C," J. Mater. Sci., vol. 31, no. 8, pp. 1969-1983, 1996/04/01 1996.
    [70] H. M. Ohnishi, K., T. Nakamura, and T. Kawanami, "High Temperature Mechanical Properties of Mullite Ceramics," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 605-612.
    [71] M. D. Sacks and H.-W. Lee, "A review of powder preparation methods and densification procedures for fabricating high density mullite," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 167-207.
    [72] T. Sato, M. Ishizuka, and M. Shimada, "Sintering and characterization of mullite—Alumina composites," Ceram. Int., vol. 12, no. 2, pp. 61-65, 1986/01/01/ 1986.
    [73] M. G. M. U. Ismail and Z. Nakai, "Sintering of mullite prepared by sol-gel method," in Mullite and Mullite Matrix Composites, S. Sömiya, R. F. Davis, and J. A. Pask Eds.: American Ceramic Society, 1990, pp. 231-241.
    [74] M. D. SACKS and J. A. PASK, "Sintering of Mullite-Containing Materials: I, Effect of Composition," J. Am. Ceram. Soc., vol. 65, no. 2, pp. 65-70, 1982.
    [75] M. D. Stuart, "Characterization and mechanical behavior of alumina-mullite ceramics," 1991.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE