| 研究生: |
王鈺涵 Wang, Yu-Han |
|---|---|
| 論文名稱: |
即時神經回饋功能性磁振造影:開放平台分析工具之建置 Real Time Neurofeedback Functional Magnetic Resonance Imaging: An Open Platform Analysis Toolbox |
| 指導教授: |
吳明龍
Wu, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 即時神經回饋功能性磁振造影 、功能性磁振造影 、神經回饋 |
| 外文關鍵詞: | real time fMRI neurofeedback, fMRI, neurofeedback |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經回饋是(Neurofeedback)一個很有希望的方法,以非侵入式調節人體大腦中的活動,應用於治療精神疾病或是強化大腦的功能。功能性磁振造影(Functional magnetic resonance imaging, fMRI)的進步目前已經能夠做到在下一個影像取得前完成所有資料的處理和分析並將分析後的結果回饋到掃瞄儀器中的受試者。我們利用即時功能性磁振造影的回饋機制(Real time fMRI neurofeedback)讓受試者能夠透過自我調控進的方式進而改變大腦的功能、認知或是行為。透過一段長時間的訓練,受試者能夠在感興趣的區域(Region of interest)上控制BOLD信號。
本研究將使用MATLAB程式製作出一套可供實驗上使用的開放式平台工具, 工具中提供下列幾項執行Neurofeedback實驗所需的基本功能: DICOM影像轉檔、移動校正、即時的大腦活化圖、取得ROI上的訊號並估計回饋值(Neurofeedback signal),希望以簡易的操作方式讓使用者能夠快速上手,除此之外,利用開放式平台能夠地輕易地擴充功能,依照使用者的需求整合並加入所需的功能到主程式中,為了確實達到工具的可行性,更搭配一個手指運動的實驗實際到掃瞄儀器上實作。
Neurofeedback is a promising approach for non-invasive modulation of human brain activity applied for the therapeutic treatment of mental disorders and enhancement of brain performance. Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as fast as the images are acquired, allowing the information to be feedback to subjects in the scanner. We applied real-time fMRI neurofeedback to train self-regulation of neural activities to produce changes in brain function, cognition, or behavior. After a brief training period in the scanner, the participants were able to regulate their BOLD fMRI activation in target ROI. Here we present a generalized software toolbox for fMRI neurofeedback. The toolbox integrates tools for image pre-processing in real-time, ROI-based feedback and real time GLM. In addition, a user-defined neurofeedback module allows users to easily design and run fMRI neurofeedback experiments. In the presented open software platform, scientists can also use encapsulate codes to add additional functionalities from external libraries, enabling flexible customization or integration of graphical interfaces and data processing.
1. Zotev, V., et al., Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. Neuroimage, 2014. 85 Pt 3: p. 985-95.
2. Basilio, R., et al., FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies. Front Behav Neurosci, 2015. 9: p. 3.
3. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, 1990. 87(24): p. 9868-9872.
4. Cox, R.W., A. Jesmanowicz, and J.S. Hyde, Real-Time Functional Magnetic Resonance Imaging. 1994.
5. Voyvodic, J.T., Real-Time fMRI Paradigm Control, Physiology, and Behavior Combined with Near Real-Time Statistical Analysis 1999.
6. Berman, B.D., et al., Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. Neuroimage, 2012. 59(2): p. 917-25.
7. Robineau, F., et al., Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training. Neuroimage, 2014. 100: p. 1-14.
8. Posse, S., et al., Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage, 2003. 18(3): p. 760-768.
9. Rota, G., et al., Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum Brain Mapp, 2009. 30(5): p. 1605-14.
10. deCharms, R.C., et al., Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A, 2005. 102(51): p. 18626-31.
11. Caria, A., et al., Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage, 2007. 35(3): p. 1238-46.
12. Keizer, A.W., R.S. Verment, and B. Hommel, Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage, 2010. 49(4): p. 3404-13.
13. Kouijzer, M.E.J., et al., Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 2009. 3(1): p. 145-162.
14. Ros, T., et al., Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage, 2013. 65: p. 324-35.
15. Zoefel, B., R.J. Huster, and C.S. Herrmann, Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage, 2011. 54(2): p. 1427-31.
16. Eklund, A., et al., Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classificatio. 2009.
17. Hollmann, M., et al., Predicting decisions in human social interactions using real-time fMRI and pattern classification. PLoS One, 2011. 6(10): p. e25304.
18. LaConte, S.M., S.J. Peltier, and X.P. Hu, Real-time fMRI using brain-state classification. Hum Brain Mapp, 2007. 28(10): p. 1033-44.
19. Sato, J.R., et al., Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox. PLoS One, 2013. 8(12): p. e81658.
20. Friston, K.J., et al., Statistical Parametric Maps in Functional Imaging:A General Linear Approach 1995.
21. Bagarinao, E., et al., Estimation of general linear model coefficients for real-time application. NeuroImage, 2003. 19(2): p. 422-429.
22. Bagarinao, E., K. Matsuo, and T. Nakai, Real-time functional MRI using a PC cluster. Concepts in Magnetic Resonance, 2003. 19B(1): p. 14-25.
23. Hui, M., et al., Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Neuropsychologia, 2014. 62: p. 111-23.
24. Johnson, K.A., et al., Intermittent "real-time" fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study. J Neuroimaging, 2012. 22(1): p. 58-66.
25. Yoo, S.S., et al., Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery. Int J Imaging Syst Technol, 2008. 18(1): p. 69-78.
26. deCharms, R.C., et al., Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 2004. 21(1): p. 436-443.
27. Yoo, S.-S., et al., Brain–computer interface using fMRI: spatial navigation by thoughts. NeuroReport, 2004. 15(10): p. 1591-1595.
28. Yoo, S.-S., et al., Reproducibility of Trial-Based Functional MRI on Motor Imagery. 2006.
29. Caminiti, R., S. Ferraina, and P. B.Johnson, The Sources of Visual Information to the Primate Frontal Lobe: A Novel Role for the Superior Parietal Lobule. 1996.
30. Cavanna, A.E. and M.R. Trimble, The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 2006. 129(Pt 3): p. 564-83.
31. Culham, J.C. and N.G. Kanwisher, Neuroimaging of cognitive functions in human parietal cortex. 2001.
32. Ilg, U.J. and P. Thier, The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain Cogn, 2008. 68(3): p. 229-40.
33. JUEPTNER, M., et al., Anatomy of Motor Learning. II. Subcortical Structures and Learning by Trial and Error. 1997.
34. Meyer, F. and G. McCarthy, Estimation of Baseline Drifts in fMRI. 2001.
35. Boubela, R.N., et al., Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential. Frontiers in Physics, 2014. 2.
36. Farthing, J.P., et al., False activation in the brain ventricles related to task-correlated breathing in fMRI speech and motor paradigms. MAGMA, 2007. 20(3): p. 157-68.
37. Mazerolle, E.L., R.C. D'Arcy, and S.D. Beyea, Detecting functional magnetic resonance imaging activation in white matter: interhemispheric transfer across the corpus callosum. BMC Neurosci, 2008. 9: p. 84.
38. Sulzer, J., et al., Real-time fMRI neurofeedback: progress and challenges. Neuroimage, 2013. 76: p. 386-99.
39. Bruhl, A.B., et al., Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study. Brain Topogr, 2014. 27(1): p. 138-48.
40. Yoo, S.-S. and F.A. Jolesz, Functional MRI for neurofeedback: feasibility study on a handmotor task. 2002.
校內:2019-02-03公開