簡易檢索 / 詳目顯示

研究生: 邱勝任
Chiu, Sheng-Ren
論文名稱: 單晶片微機電六軸慣性感測元件與整合電路
Monolithic 6-DoF MEMS Inertial Sensor with Integrated Electronics
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 微機電慣性感測元件加速度計角速度計體型微矽加工三角積分器電路轉導放大器自動增益控制電路
外文關鍵詞: MEMs inertial measurement unit, accelerometer, gyroscope, bulk micromachining, sigma-delta modulator, trans-impedance amplifier, automatic gain control
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究使用SOG(Silicon On Glass)製程製作之六軸慣性感測元件與標準CMOS製程製作之六軸慣性感測元件讀取電路,以應用於加速度與角速度之量測。本論文分成三大部份。第一部份,利用SOG之體型微矽加工(Bulk Micromachining)以及深離子反應蝕刻(Deep Reactive-ion-etchant, DRIE)技術,在40um厚度的SOI晶元上製作具高深寬比的六軸慣性感測元件,包含三軸一體之加速度計與三軸一體之角速度計,考慮兩元件的最佳化設計將三軸一體之加速度計置於最小轉動慣量位置,角速度計則採用圓周分散式結構設計,使質量塊擁有最大的振盪幅度,提升角速度量測之靈敏度,並抑制環境干擾影響。整個六軸慣性感測元件的尺寸為2.1mmx2.1mm,為使加速度計與角速度計同時運作,本六軸慣性感測元件採用玻璃介質(Glass Frit)接合技術將其密封於2m bar之真空度下,在此真空度下所量得之角速度計振盪器之品質因子為2000。第二部份發表一個全整合的六軸慣性感測元件的讀取與訊號處理電路。在三軸加速度之讀取電路設計採用了三角積分器電路作為類比前端電路,搭配全數位之校正電路可獨立校正加速度計各軸的零點電壓與靈敏度計。在角速度計振盪器的驅動電路上,採用一轉導放大器搭配自動增益控制電路來達成振盪器穩定輸出之目標。在科式加速度計的讀取電路設計上亦採用轉導放大器並搭配數位頻率合成器來取得解調所需之所需相位,本電路採用tsmc 0.25um 1P5M標準製程,晶片尺寸為2.5mm x 2.5mm。第三部份為六軸慣性感測元件與讀取電路測試結果,由測試結果可得加速度計之x/y/z軸之靈敏度與最小它軸靈敏度分別為1.442V/g;0.03%,1.241V/g;0.21%與1.434V/g;0.21%。角速度計之x/y/z軸之靈敏度分別為1.62mV/DPS,1.67mV/DPS與1.67mV/DPS,整體的耗電量在3V的操作電壓下消耗的電流約為2.5mA。

    This dissertation investigates a monolithic 6-DoF MEMS inertial sensor fabricated by SOG(Silicon On Glass) process together with a fully integrated readout/control circuit fabricated by standard CMOS process for application into the linear acceleration and angular rate measurement. There are three parts in this dissertation. In the first part, a monolithic 6-DoF MEMS inertial sensor including a tri-axis accelerometer and a tri-axis gyroscope is fabricated by SOG(Silicon On Glass) bulk micromachining process with DRIE (Deep Reactive-ion-etchant).For the optimum design for both size and performance considerations, the tri-axis accelerometer is designed under the minimum angular momentum consideration while the tri-axis gyroscope is designed under the conservation of momentum and distributed and differential for sensing mechanism for robustness. The element size of the monolithic 6-DoF inertial sensor is 2.1mm x 2.1mm, and the structure of the inertial sensor is hermetic sealed with the silicon cavity by glass frit process under 2 m bar condition. The quality factor of the gyroscope resonator is about 2000. The second part gives the detail design consideration of the fully integrated readout/control circuit of the MEMS 6-DoF inertial senor. In the accelerometer readout circuit design, a first-order Sigma-Delta modulator is used as analog front end. A calibration DAC (CALDAC) for sensor gain and offset trimming is also adopted. In the gyroscope system, the designed drive/readout ASIC consists of a driving-loop circuit to drive the resonator into resonance, a trans-impedance amplifier (TIA) to detect the Coriolis signal as well as a gain/offset trimming ADC to adjust this output. The ASIC is fabricated by tsmc 0.25um 1P5M process and th chip size is 2.5 x 2.5 mm2. The third part described the measurement results of the 6-DoF inertial measurement unit. The results show that the sensitivities and cross-axis sensitivities of the x/y/z tri-axis accelerometer are 1.442V/g; 0.03%, 1.241V/g; 0.21% and 1.434V/g; 0.21%, respectively. The sensitivities of the x/y/z tri-axis gyroscope are 1.62mV/DPS, 1.67mV/DPS and 1.67mV/DPS, respectively. The power consumption is about 2.5mA under 3V operation.

    CONTENTS ABSTRACT (Chinese)........................I ABSTRACT (English)......................III ACKONWLEDGEMENT...........................V CONTENTS.................................VI FIGURE CAPTIONS..........................IX TABLE CAPTIONS...........................XI CHAPTER 1 Introduction 1.1 Overview of MEMS Inertial Sensors................1 1.1.1 MEMS Accelerometers......................2 1.1.2 MEMS Gyroscopes..........................3 1.2 Research Motivation..............................5 1.3 Dissertation Organization........................5 CHAPTER 2 Operation Principle and Circuit Techniques for Capacitive MEMS Inertial Sensor 2.1 Operation Principle of MEMS Capacitive Accelerometer..8 2.2 Operation Principle of MEMS Capacitive Gyroscope......10 2.3 Circuit Techniques for Capacitive Sensing.............13 2.3.1 Capacitive Sensing Principles...................14 2.3.2 Review of Capacitive Sensing Circuits for MEMS Inertial Sensors...............................................14 2.3.3 Comparison of Different Capacitive Sensing Architectures.17 2.4 Summary...............................................18 CHAPTER 3 Element Design of a Monolithic 6-DoF MEMS Inertial Sensor 3.1 Introduction..........................................23 3.2 Element Design of a Tri-axis Accelerometer.....23 3.3 Element Design of a Tri-axis Gyroscope.........25 3.4 Design of Electrostatic Actuator and Capacitive Sensor..27 3.5 Summary.....32 CHAPTER 4 Interface and Control Electronics for MEMS 6-DoF Inertial Sensor 4.1 Introduction.....45 4.2 System Overview...47 4.3 Control Circuit for Tri-axis Accelerometer.....48 4.3.1 Block Diagram......48 4.3.2 Circuit Implementation.....48 4.3.3 Circuit Operation.....49 4.4 Control Circuit for Tri-axis Gyroscope.....52 4.4.1 Block Diagram.....52 4.4.1 Driving Loop and AGC.....53 4.4.2 On-chip Charge Pump Design.....54 4.4.3 Coriolis Readout Circuit with Gain/offset Trimming.....55 4.4.4 Digital Signal Processing Circuit.....58 4.5 Temperature Effects and Compensation Method on MEMS Gyroscope.....59 4.5.1. Temperature Effects on MEMS Gyroscope.....61 4.5.2. Active Thermal Compensation System.....63 4.6 Summary......65 CHAPTER 5 Fabrication and Experimental Results 5.1 Fabrication.....82 5.2 Experimental Results.....83 5.2.1 Experimental Results of a Tri-axis Accelerometer.....83 5.2.1.1 C-V Characterizations.....83 5.2.1.2 Sensitivity & Linearity.....83 5.2.1.3 Cross-axis sensitivity.....84 5.2.2 Experimental Results of a Tri-axis Gyroscope.....84 5.2.2.1 C-V Characterizations......84 5.2.2.2 Frequency Response.....85 5.2.2.3 Oscillating Loop with AGC.....85 5.2.2.4 Rate Sensitivity......86 5.2.2.5 Temperature Compensation.....86 5.3 Performance Comparison.....87 5.4 Summary.....87 CHAPTER 6 Conclusions and Future Works 6.1 Conclusions.....99 6.2 Future Works.....102 REFERENCES.........................103

    [1] Yazdi N., Ayazi F., Najafi K. “Micromachined inertial sensors” Proc. IEEE 1998, 86, 1640–1659.
    [2] Barbour N., Brown E., Connelly J., Dowdle J., Brand G., Nelson J., O’Bannon J. “Micromachined inertial sensors for vehicles” IEEE Confer. Intell. Trans. Syst. 1997, 1, 1058–1063.
    [3] Acar, C., Shkel, A. “MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness” Springer: New York, NY, USA, 2008.
    [4] Gulmammadov F. “Improving IMU Performance with Adaptive Filters” M.Sc. Thesis, University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2007.
    [5] Chae J, Kulah H and Najafi K 2002 “A hybrid silicon-on-glass (SOG) lateral micro-accelerometer with CMOS readout circuitry” MEMS 2002: Proc. 15th IEEE Int. Conf. on Micro Electro Mechanical Systems (Las Vegas, NV) pp 623–6
    [6] Chae J, Kulah H and Najafi K 2004 “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry” J. Microelectromech. Syst. 13 628–35
    [7] Chae J, Kulah H and Najafi K 2005 “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer” J. Micromech. Microeng. 15 336–45
    [8] Lemkin M A, Boser B E, Auslander D and Smith J H 1997 “A 3-axis force balanced accelerometer using a single proof mass” Transducers ‘97: Proc. 9th Int. Conf. on Solid State Sensors and Actuators (Chicago, IL) pp 1185–8
    [9] Lemkin M A and Boser B E 1999 “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics” IEEE J. Solid-State Circuits 34 456–68
    [10] Chae J, Kulah H and Najafi K 2005 “A monolithic three-axis micro-g micromachined silicon capacitive accelerometer” J. Microelectromech. Syst. 14 235–42
    [11] Qu H, Fang D and Xie H 2008 “A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier” IEEE Sensors J. 8 1511–8
    [12] Sakata M, Komura Y, Seki T, Kobayashi K, Sano K and Horiike S 1999 “Micromachined relay which utilizes single crystal silicon electrostatic actuator” MEMS’99: Proc. 12th IEEE Int. Conf. Microelectromechanical Systems (Orlando, FL) pp 21–4
    [13] J.B.L. Foucault, “Dèmonstration Physic au Mouvement de Rotation de la Terre au Moyen du Pendule” C.R. Acad. Sci. Paris, Vol. 35, pp. 421-424, 1852.
    [14] R.N. Arnold, L. Maunder, “Gyrodynamics and its engineering applications,” New York: Academic Press, 1961.
    [15] http://hyperphysics.phy-astr.gsu.edu/HBASE/gyr.html
    [16] E.A. Izmailov, M.M. Kolesnik, A.M. Osipov, A.V. Akimov, “Hemispherical Resonator Gyro Technology: Problems and Possible Ways of their Solutions,” International Conference on Integrated Navigation Systems, pp. 6/1-6/9, 1999
    [17] P. Greiff, B. Boxenhorn, T. King, L. Niles, “Silicon monolithic micromechanical gyroscope,” Tech. Dig. 6th Int. Conf. Solid-State Sensors and Actuators pp. 966-68, 1991.
    [18] D. Fang, “Low noise and low-power interface circuits design for integrated CMOS-MEMS inertial sensors, ” Ph.D. dissertation, Univ. of Florida, 2006
    [19] N. Yazdi and K. Najafi, “An interface IC for a capacitive silicon μg accelerometer, ” IEEE International Solid-State Circuits Conference, Digest of Technical Papers. pp. 132-133, 1999.
    [20] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μ g / √Hz monolithic CMOS MEMS accelerometer, ” IEEE Journal of Solid-State Circuits, vol. 39, pp. 722-730, 2004.
    [21] M. Lemkin and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics, ” IEEE Journal of Solid-State Circuits, vol. 34, pp. 456-468, 1999.
    [22] B. V. Amini and F. Ayazi, “A 2.5-V 14-bit Σ-Δ CMOS SOI capacitive accelerometer, ” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2467-2476, 2004..
    [23] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation, ” 12th IEEE International Conference on Micro Electro Mechanical Systems, pp. 606-611, 1999.
    [24] J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, “Single-chip surface micromachined integrated gyroscope with 50º/h Allan deviation, ” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1860-1866, 2002.
    [25] D. Fang and H. Xie, “A Low-Power Low-Noise Capacitive Sensing Amplifier for Integrated CMOS-MEMS Inertial Sensors, ” presented at The IASTED International Conference on Circuits, Signals and Systems, Clearwater Beach, FL, 2004..
    [26] G. K. Fedder, “Simulation of microelectromechanical systems, ” Ph.D. dissertation, Univ. California at Berkeley, 1994.
    [27] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer, ” Journal of Microelectromechanical Systems, vol. 11, pp. 188-195, 2002.
    [28] F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope, ” Journal of Microelectromechanical Systems, vol. 10, pp. 169-179, 2001.
    [29] K. H.-L. Chau, S.R.Lewis, Y.Zhao, R.T.Howe, S.F.Bart, and R.G.Marsheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-G Applications, ” The 8th International Conference on Solid-State Sensors and Actuators, vol. 1, pp. 593-596, 1995.
    [30] W. A. Clark, R. T. Howe, and R. Horowitz, “Surface micromachined Z-axis vibratory rate gyroscope, ” Digest of Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 283, SC, 1996.
    [31] H. Kulah, N. Yazdi, and K. Najafi, “A CMOS switched-capacitor interface circuit for an integrated accelerometer, ” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 244-247, 2000.
    [32] Y.W. Hsu, J.Y. Chen, H.T. Chien, S. Chen, S.T. Lin and L.P. Liao “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity, ” J. Micromech. Microeng. 20 (2010).
    [33] Sue, C.Y. “Design and Dynamic Analysis of Electrostatic-drive Three-axes Micro-gyroscope. ” Ph.D. dissertation, National Cheng Kung University, Jan 2010
    [34] Gulmammadov, F. “Improving IMU Performance with Adaptive Filters. ” Master’s Thesis, University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany, 2007.
    [35] Liu, G.; Wang, A.; Jiang, T.; Jiao, J.; Jang, J. “Effects of environmental temperature on the performance of a micromachined gyroscope. ” Microsyst. Technol. 2007, 14, 199–204.
    [36] Wang, X.; Wu, W.; Fang, Z.; Luo, B.; Li, Y.; Jiang, Q. “Temperature drift compensation for hemispherical resonator gyro based on natural frequency. ” Sensors 2012, 12, 6434–6446.
    [37] Li, W.Y.; Ruan, A.W.; Luo, J.S. “Error sources in micromachined comb-drive turning-fork gyroscope. ” J. Aeronaut. Astronaut. 1999, 20, 426–429.
    [38] Zhu, R.; Zhang, Y.H.; Bao, Q.L. “Identification of temperature drift for FOG using RBF neural networks. ” J. Shanghai Jiaotong Univ. 2000, 34, 222–225.
    [39] Zhu, R.; Zhang, Y.H.; Bao, Q.L. “A novel intelligent strategy for improving measurement precision of FOG. ” IEEE Trans. Instrum. Meas. 2000, 49, 1183–1188.
    [40] Jason, K.P.H. “Modeling and identification of the Jet Propulsion Laboratory vibratory rate microgyroscope. ” Ph.D. Thesis, University of California: Los Angeles, CA, USA, 2002.
    [41] Liu, D.; Chi, X.; Cui, J.; Lin, L.; Zhao, Q.; Yang, Z.; Yan, G. “Research on temperature dependent characteristics and compensation methods for digital gyroscope. ” Int. Confer. Sens. Technol. 2008, 1, 273–277.
    [42] Xia, D.; Chen, S.; Wang, S.; Li, H. “Microgyroscope temperature effects and compensation-control methods. ” Int. J. Sensors 2009, 9, 8349–8376.
    [43] Spangler L and Kemp C J “Integrated silicon automotive accelerometer Transducers” 1995 ISAAC Proc. 8th Int. Conf. on Solid State Sensors and Actuators and Eurosensors IX (Stockholm, Sweden) pp 585–8.
    [44] Arnold, E.; Nuscheler, F. “Compensation methods for a silicon tuning fork gyroscope. ” Microsyst. Technol. 2008, 14, 623–628.
    [45] Tsai, N.C.; Sue, C.Y. “Integrated model reference adaptive control and time-varying angular rate estimation for micro-machined gyroscopes. ” Int. J. Control 2010, 83, 246–256.
    [46] Chiu, S.R.; Sue, C.Y.; Liao, L.P.; Teng, L.T.; Hsu, Y.W.; Su, Y.K. “A fully integrated circuit for MEMS vibrating gyroscope using standard 0.25 μm CMOS process. ” In Proceedings of the 2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 19–21 October 2011; pp. 347–350.
    [47] Prikhodko, I.P.; Trusov, A.A.; Shkel, A.M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. ” Sens. Actuat. A Phys. 2013, Volume, 517–524.
    [48] Chiu, S.R.; Sue, C.Y.; Lin, C.H.; Teng, L.T.; Liao, L.P.; Hsu, Y.W.; Su, Y.K. “Active thermal compensation of MEMS based gyroscope. ” Int. Confer. IEEE Sens. 2012, Volume, 1–4.
    [49] C.C. Painter, A.M. Shkel, “Active Structural Error Suppression in MEMS Vibratory Rate Integrating Gyroscopes,” IEEE Sensors Journal, Vol. 3, No. 5, pp.595-606, 2003.

    無法下載圖示 校內:2019-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE