簡易檢索 / 詳目顯示

研究生: 陳冠宇
Chen, Kuan-Yu
論文名稱: 以原子層沈積法(ALD)製作高品質透明薄膜電晶體與特性研究
High performance of ZnO transparent thin film transistors fabrication and performances study by ALD
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 氧化鋅薄膜電晶體原子層沈積法
外文關鍵詞: ZnO, TFT, ALD
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討以原子層沈積法沈積高品質氧化鋅薄膜,藉由原子層沈積法的均勻性及高階梯覆蓋性,製作增強型氧化鋅透明薄膜電晶體,並改變不同溫度沈積氧化鋅通道層,和改變氧化鋅含微量鋁金屬之鋁含量,並對不同閘源極電壓下之汲源極電流-汲源極電壓關係、固定汲源極電壓之汲源極電流-閘源極電壓關係、元件照光穩定性進行分析。
    在變溫沈積通道層方面,由於以原子層沈積法沈積氧化鋅薄膜,會因為基板溫度變化,對薄膜的濃度、阻值、載子移動率會有影響,而薄膜電晶體則會因為薄膜濃度太大導致沒有電晶體特性。故本論文固定通道層厚度為25 nm,改變沈積溫度分別為75 oC、100 oC、125 oC,其中以100 oC為最佳沈積溫度,場效載子移動率達8.87 cm2/V-s,電流開關比(Ion/Ioff)為106。
    探討氧化鋅摻雜不同微量鋁之比例,分別為30(DEZn):1(TMA)、20:1、15:1,其中以20:1的比例為最佳條件,場效載子移動率達73.4 cm2/V-s,電流開關比(Ion/Ioff)為106,而摻雜比例到的15:1時,則因為薄膜濃度過高,元件沒有飽和現象。
    探討元件光穩定方面,照光波段為400nm~700nm,在汲源極電流-閘源極電壓關係中,發現隨著照光的波長越短,關閉電流隨著變大,開關電流也受到光電效應所引發的光電流而有微量的提升。

    This research is to investigate the highly transparent ZnO thin film used by Atomic Layer Deposition (ALD). Because of large area uniformity and high step coverage in fabricating enhancement-mode thin film transistors with the ZnO films. This research changed the different temperature to deposited ZnO films as the active channel layers and changed the different amount of Al slightly doped into ZnO films by ALD, To analyze the IDS-VDS and IDS-VGS curves, it would illuminate with different wavelengths for optical stability.
    For aspect of varying-temperature deposition to channel layer, carrier concentration, resistivity and mobility would be affected due to varying temperature of subtract in ALD deposition process of ZnO, so that TFTs would lose properties of transistor. This research fixed the thickness of channel layer as 25nm, varied the deposition temperature as 75℃, 100℃, 125℃, the best deposition temperature is 100℃ among these temperature. At temperature of 100℃, mobility reached to 8.87 cm2/V-s, current on and off ratio(Ion/Ioff) reached to 106.
    Researching in the ratio of Al doped into ZnO, there were few different ratio tested in experiment such as 30(DEZn):1(TMA), 20:1 and 15:1. The best condition among these ratio is 20:1, mobility reached to 73.4 cm2/V-s, current on and off ratio(Ion/Ioff) reached to 106. As to doping ratio of 15:1, the carrier concentration is too high to represent the saturation situation.
    The optical stability in this device, illuminated from 400 nm to 700 nm in wavelengths. To analysis the IDS-VGS curves, follow the decreasing of illuminating wavelengths, off current will enhance because of induced optical current by Photoelectric effect.

    摘要 I Abstract III 誌謝...........................................................................................................V 目錄 VI 表目錄...................................................................................................VIII 圖目錄......................................................................................................IX 第一章 序論 1 1.1 透明薄膜電晶體之發展及近況 1 1.2研究方式 1 第二章 原理 5 2.1 化學氣相沈積系統 5 2.1.1化學氣相沈積方式 5 2.1.2 原子層化學氣相沈積法 5 2.1.3 薄膜沈積原理 6 2.2 薄膜電晶體工作原理 8 2.3薄膜電晶體重要參數 9 2.3.1薄膜電晶體之場效載子移動率 9 2.3.2 電流開關比 10 2.3.3 次臨界斜率 10 2.4..4臨界電壓 11 第三章 實驗流程 18 3.1透明薄膜電晶體結構 18 3.2 透明薄膜電晶體之元件製作 18 3.2.1 閘極製作 18 3.2.2 高台製作 20 3.2.3源極、汲極電極製作 22 第四章 實驗結果與討論 30 4.1 氧化鋅含微量鋁之高濃度及通道層薄膜特性研究 30 4.1.1 變溫沈積ZnO薄膜之霍爾量測 30 4.1.2 改變摻雜微量鋁比例製作通道層 31 4.1.3 改變摻雜微量鋁比例製作高濃度層 33 4.2氧化鋅含微量鋁金屬元件特性比較 33 4.2.1 變溫沈積氧化鋅通道層直流特性之比較 33 4.2.2不同氧化鋅摻雜微量鋁金屬比例之通道層直流特性之比較 34 4.2.3 氧化鋅含微量鋁金屬通道層之照光直流特性量測 35 第五章 結論 48

    [1.1]N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski and V. Osinniy,
    “Electrical behavior of zinc oxide layers grown by low temperature
    atomic layer deposition”, Appl. Phys. Lett, vol. 92 pp. 023502,
    (2008).
    [1.2]W. Yang, Z. Liu, D. L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, “Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method”, Appl. Surf. Sci, vol 255 pp. 5669-5673, (2009).
    [1.3]H. Makino, A. Miyake, T. Yamada, N. Yamamoto and T. Yamamot
    “Influence of substrate temperature and Zn-precursors on atomic
    layer deposition of polycrystalline ZnO films on glass”,Thin Solid
    Films, vol. 517 pp. 3138-3142, (2009).
    [1.4]I. A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A. Wojcik
    Godowska,M. Godlewski, P.Duzwski, E. Lusakowska and
    W.Paszkowic,“Structural and optical properties of low-temperature
    ZnO films grown by atomic layer deposition with diethylzinc and
    water precursors”, J. Crystal Growth, vol. 311, pp. 1096-1101,
    (2009).
    [1.5]T. Krajewski, E. Guziewicz, M. Godlewski, L. Wachnicki,
    I. A. Kowalik, A. Wojcik-Glodowska, M. Lukasiewicz, K. Kopalko
    V. Osinniy and M. Guziewicz, “The influence of growth temperature
    and precursors' doses on electrical parameters of ZnO thin films
    grown by atomic layer deposition technique”, Microelectronics
    Journal, vol. 40, pp. 293-295, (2009).

    [1.6]A. Wojcik, M. Godlewski, E. Guziewicz, R. Minikayev and W. Paszkowicz, “Controlling of preferential growth mode of ZnO thin films grown by atomic layer deposition”, J. Crystal Growth, vol. 310, pp. 284-289, (2008)
    [1.7]E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy, A. Wojcik, S. Yatsunenko, E. Lusakowska, W. Paszkowicz andM.Guziewicz, “Extremely low temperature growth of ZnO by atomic layer deposition”, J. Appl. Phys, vol. 103, pp. 033515, (2008).
    [1.8]D. M. King, X. Liang, P. Li and A. W. Weimer, “Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bedreactor”, Thin Solid Films, vol. 516, pp. 8517-8523, (2008).
    [1.9]P. Y. Lin, J. R. Gong, P. C. Li, T. Y. Lin, D. Y. Lyu, D. Y. Lin, Hung J. Lin, T. C. Li, K. J. Chang and W. J. Lin, “Optical and structural characteristics of ZnO films grown on (0001) sapphire substrates by ALD using DEZn and N2O”, J. Crystal Growth, vol. 310, pp. 3024-3028, (2008).
    [1.10]S. Jeon, S. Bang, S. N. Lee, S. Kwon, W. Jeong, H. Jeon, H. J. Chang and H. H. Parkc,“Structural and electrical properties of ZnO thin films deposited by atomic layer deposition at low temperatures”, J. Electrochemical, vol. 155, pp. H738-H743, (2008).
    [1.11]S. H. K. Park, C. S. Hwang, H. Y. Jeong, H. Y. Chu and K. Ik Cho, “Transparent ZnO-TFT Arrays fabricated by atomic layer deposition”, Electrochemical and Solid-State Letters, vol. 11, pp. H10-H14, (2008).

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE