簡易檢索 / 詳目顯示

研究生: 黃重元
Hwang, Chong-Yuan
論文名稱: 鋅鐵氧磁體應用於二氧化碳甲烷化之研究
The Study of Zn-ferrite Applied for CO2 methanation
指導教授: 黃啟祥
Hwang, Chii-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 96
中文關鍵詞: 二氧化碳甲烷化鋅鐵氧磁體
外文關鍵詞: Zn-ferrite, CO2 methanation
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      CO2造成之溫室效應使地球氣溫不斷提高,各地氣候異常,因此如何有效降低CO2的含量甚至進一步的將CO2分解及轉換,便成為各國重視的課題。
      為分解CO2並進一步將之轉換成有用氣體,本研究是以水熱法製備高比表面積之ZnFe2O4觸媒粉末,並利用此觸媒粉末來進行CO2之甲烷化反應。實驗是藉由XRD、BET、TEM、TG等儀器來分析與觀察反應前後觸媒粉末的特性;利用GC來分析CO2之甲烷化反應;並檢討反應溫度、壓力及氣體流率( CO2及H2 )對CO2甲烷化反應之影響。
      尖晶石結構之ZnFe2O4觸媒粉末以硝酸鹽類為起始原料,氨水為沉澱劑,在150℃水熱處理2 h合成而得。合成粉末之結晶子大小為7.7 nm,比表面積為147.9 m2/g。此合成粉末在300℃、50 % H2及1.8 atm壓力下,活化3 h後仍維持尖晶石結構的相;而在350℃以上的溫度活化後則有ZnO及α-Fe相之產生。隨著活化溫度之提高,ZnFe2O4觸媒粉末所產生之氧空缺及粒徑大小亦隨之增加。
      活化後之ZnFe2O4觸媒被應用於CO2甲烷化反應之結果:在300℃及1.8 atm的反應條件下,ZnFe2O4觸媒可使CO2的轉化率及CH4的生成率比反應條件為300℃及1 atm時為高。當反應溫度逐漸增加至400℃時,CO2轉化率及CH4生成率隨之增加。當反應氣體流率增加時,並無法對CO2轉化率及CH4生成率有增加之效果。

    Abstract
      The greenhouse effect as a result of CO2 causes the raise of earth temperature and unusual weather phenomenon. Nowadays it is an important topic to find the way of CO2 reduction or conversion.
      ZnFe2O4 powders with high specific surface area were synthesized by the hydrothermal treatment and were used as the catalysts for CO2 methanation in this study. The synthesized powders before and after reaction of CO2 methanation were characterized by XRD、BET、TEM and TG and the CO2 methanation was analyzed by GC. Effects of parameters of reaction temperature、pressure and flow rate of reactant gas ( CO2 and H2 ) on the CO2 methanation were investigated.
      ZnFe2O4 powders with spinel structure were hydrothermally synthesized at 150℃ for 2 h using metal nitrate as the raw materials. The crystallite size and specific surface area of synthesized powders were 7.7 nm and 147.9 m2/g, respectively. After reducing by 50 % H2 + 50 % N2 at 300℃ for 3h in the reaction pressure 1.8 atm, the synthesized powders were still spinel structure ; however, ZnO and α-Fe were formed at ≥ 350℃. The amount of oxygen-deficient and particle sizes of ZnFe2O4 powders increased with the increase of reducing temperature.
      The reduced powders of ZnFe2O4-δ were applied for CO2 methanation. The results show that the efficiency of CO2 conversion and CH4 yield at the reaction condition of 1.8 atm and 300℃was better than that in 1 atm. The efficiency of CO2 conversion and CH4 yield increased with the increasing reaction temperature. The efficiency of CO2 conversion and CH4 yield couldn’t be improved by the increasing flow rate of reactant gas.

    目 錄 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..II 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .III 目 錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV 表 目 錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 圖 目 錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IX 第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1-2 甲烷的用途. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1-3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 第二章 理論基礎與前人研究. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2-1 溫室效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2-1-1 溫室效應之成因. . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2-1-2 溫室效應對地球的影響. . . . . . . . . . . . . . . . . . . . . . .. . . 8 2-2 二氧化碳之處理技術分類. . . . . . . . . . . . . . . . . . . . . . . . . .9 2-2-1 二氧化碳儲存技術. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2-2-2 二氧化碳固定技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2-2-3 二氧化碳轉化技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2-3 奈米觸媒. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2-3-1 奈米微粒. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2-3-2 奈米微粒的基本性質. . . . . . . . . . . . . . . . . . . . . . . . .. .13 2-3-3 奈米微粒的表面效應. . . . . . . . . . . . . . . . . . . . . . . . .. .15 2-4 水熱合成法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2-4-1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2-4-2 水熱反應系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2-4-3 水熱反應機構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2-4-4 高壓反應釜反應容積與溫度之關係. . . . . . . . . . .. . . . . . . . . .19 2-4-5 水熱法製備粉體的優點. . . . . . . . . . . . . . . . . . . . . . . . . 20 2-4-6 水熱製程的改進. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2-5 結晶理論與機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2-5-1 成核理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2-5-2 成長理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2-5-3溶質濃度與晶體成核、成長之關係. . . . . . . . . . . . . . . . . . . . .24 2-6 尖晶石型鐵氧磁體. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2-7 吸附理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2-7-1 物理吸附. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2-7-2 化學吸附. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2-8 催化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2-8-1 催化概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2-8-2 反應動力學. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2-9 鐵氧磁體催化反應之特性. . . . . . . . . . . . . . . . . . . . . . . . ..29 2-10 操作溫度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 第三章 實驗方法與步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3-1 粉末製備流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3-2 觸媒粉末之製備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3-2-1 起始原料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3-2-2 混合. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3-2-3 水熱處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3-2-4 離心、乾燥與研磨. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3-3 觸媒物性之鑑定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3-3-1 設備說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3-3-2 氫氣之程溫還原. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3-3-2-1 觸媒之填充. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3-3-2-2 程溫還原. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3-4 觸媒反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3-4-1 設備說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3-4-2 實驗步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3-4-2-1 觸媒之填充. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3-4-2-2 觸媒之活化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3-4-2-3 二氧化碳甲烷化反應. . . . . . . . . . . . . . . . . . . . . . . . . 48 3-5 性質分析分析及觀察方法. . . . . . . . . . . . . . . . . . . . . . . . ..49 3-5-1 X射線繞射儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3-5-2 自動氣相物理吸附儀. . . . . . . . . . . . . . . . . . . . . . . . .. .50 3-5-3 穿透式電子顯微鏡. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3-5-4 熱重分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3-5-5傅立葉轉換紅外線吸收光譜儀. . . . . . . . . . . . . . . . . . . . . . .51 第四章 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 4-1 粉末特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4-2 不同壓力下對CO2甲烷化反應之影響. . . . . . . . . . . . . . . . . . . . .61 4-3 觸媒活化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4-3-1 不同活化溫度對鋅鐵氧磁體結構之影響. . . . . . . . . . . . . . . . . . 62 4-3-2 經不同溫度活化後之粉末性質. . . . . . . . . . . . . . . .. . . . . . .63 4-3-3 程溫氧化之重量分析. .. . . . . . .. . . . . . . . . . . . . . . . .. .63 4-3-4 程溫還原分析. . . . . .. . . . . . . . . . . . . . . . . . . . . . . .64 4-3-5 FT-IR光譜分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 4-4 CO2甲烷化反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 4-4-1溫度對CO2轉化率之影響. . . . . . . . . . . . . . . . . . . . . .. . . .65 4-4-2溫度對CH4生成率之影響. . . . . . . . . . . . . . . . . . . . . .. . . .66 4-4-3 CO2甲烷化反應後之粉末性質. . . . . . . . . . . . . . . . . . . . . . .66 4-5 不同流率對CO2甲烷化之影響. . . . . . . . . . . . . . . . . . . . .. . . 67 4-5-1不同流率對CO2轉化率之影響. . . . . . . . . . . . . . . . . . . . . . . 67 4-5-2 不同流率對CH4生成率之影響. . . . . . . . . . . . . . . . .. . . . . . 68 第五章 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 第六章 未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    參考文獻
    [1] The Intergovernmental Panel on Climate Change (1995)
    [2] 陳維新, 江金龍, “空氣污染與防制”, 高立圖書有限公司 (2001).
    [3] M.Tabata, Y. Tamaura, “Complete Reduction of Carbon-Dioxide to Carbon   
    Using Cation-Excess Magnetite”, Nature, 346, 19, 255-256 (1990).
    [4] Chun-lei Zhang, Shuang Li, Li-jun Wang, Tong-hao Wu and Shao-yi Peng,” 
      Studies on the Decomposition of Carbon Dioxide into Carbon with Oxygen- 
      Deficient Magnetite”, Mater. Chem. and Phys., 62, 44 -51 (2000).
    [5] CT. Kodama, H. Kato, N. Hasegawa, M. Tsuji and Y. Tamaura, “Decomposition
      of CO2 to Carbon by H2- reduced Ni(II)- and Co(II)- bearing ferrites at
      300℃”, J. Mater. Res., 9(2), 462-467 (1994).
    [6] M. Tabata, H. Kato, T. Kodama, T. Yoshida, M. Tsuji and Y. Tamaura,”CO2
      Decomposition with Mangano-Wustite”, J. Mater. Sci., 29, 999-1003 (1994).
    [7] Jung-Sik Kim, Jung-Ryul Ahn, Chang Woo Lee, Y. Murakami and D. Shindo,”
      Morphological Properties of Ultra-Fine (Ni-Zn)-Ferrites and Their Ability
      to Decompose CO2”, J. Mater. Chem., 11, 3373–3376 (2001).
    [8] M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y. Tamaura, “
      CO2 Decomposition with Oxygen-Deficient Mn(II) Ferrite”, J. Mater. Sci.,   28, 971-974 (1993).
    [9] H. Kato, T. Kodama, M. Tsuji, Y. Tamaura, “ Decomposition of carbon
      dioxide to carbon by hydrogen-reduced Ni (ii)- bearing ferrite”, J.  
      Mater. Sci., 29, 5689-5692 (1994).
    [10] M. Tsuji, H. Kato, T. Kodama, Shin Ger Chang, N. Hesegawa and Y.
      Tamaura,” Methanation of CO2 on H2-Reduced Ni(II)- or Co(II)- Bearing  
      Ferrites at 300℃”, J. Mater. Sci., 29, 6227-6230 (1994).
    [11] T. Kodama, Y. Kitayama, M. Tsuji and Y. Tamaura,” Methanation of CO2
      Using Ultrafine NiFe3-xO4”, Energy, 22(2/3), 183-187 (1997).
    [12] H. Kato, T. Sano, Y. Wada, Y. Tamaura, M. Tsuji,” Methanation of CO2
      with the Oxygen-Deficient Ni(II)- Ferrite under Dynamic Conditions”, J.
      Mater. Sci., 30, 6350-6354 (1995).
    [13] M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama and Y. Tamaura, “
      Preparation of CO2 Methanation Activity of an Ultrafine Ni(II) Ferrite
      Catalyst”, J. Cata., 164, 315-321 (1996).
    [14] M. Tsuji, K. Nishizawa, T. Yoshida and Y. Tamaura,” Methanation
      reactivity of Carbon Deposited Directly from CO2 on to the Oxygen
      Deficient Magnetite”, J. Mater. Sci., 29, 5481-5484 (1994).
    [15] K. Nishizawa, H. Kato, K. Mimori, T. Yoshida, N. Hasegawa, M. Tsuji and
      Y. Tamaura,” Methanation of Carbon Deposited Directly from CO2 on Rhodium-
      bearing Activated Magnetite”, J. Mater. Sci., 29, 768-772 (1994).
    [16] T. Yoshida, K. Nishizawa, M. Tabata, H. Abe, T. Kodama, M. Masamichi and
      Y. Tamaura, “ Methanation of CO2 with H2- reduced Magnetite”, J. Mater.
      Sci., 28, 1220-1226 (1993).
    [17] H. Sakurai, M. Haruta, “Carbon Dioxide and Carbon Mnoxide Hydrogenation
      over Gold Supported on Titanium, Iron and Zinc Oxides ”, Applied
      Catalysis, 127, 93-105 (1995).
    [18] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura and Y. Souma, “
      Methanation of Carbon Dioxide over LaNi4X type Catalysts”, Energy
      Convers. Mgmt, 36, 653-656 (1995).
    [19] Y. Souma, H. Ando, M. Fujiwara and R. Kieffer, “Catalytic Hydrogenation
      of Carbon Dioxide to Hydrocarbons”, Energy Convers. Mgmt, 36, 593-596
      (1995).
    [20] H. Ando, M. Fujiwara, Y. Matsumura, H. Miyamura, H. Tanaka and Y. Souma,
      “Methanation of Carbon Dioxide over LaNi4X type Intermetallic compounds
      as catalyst precursor”, J. Alloys and Compounds, 223, 139-141 (1995).
    [21] M. Yamasaki, M. Komori, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami
      and K. Hashimoto, “CO2 Methanation Catalysts Prepared from Amorphous Ni-
      Zr-Sm and Ni-Zr-misch Metal Alloy Pecursors”, Mater. Sci. and Engin.,
      267, 220-226 (1999).
    [22] S. Mori, W. C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai, K. Kobayashi,
      “Mechanochemical activation of catalysts for CO2 methanation”, Applied
      Catalysis A: General 137, 255-268 (1996).
    [23] M.Marwood, R. Doepper, A. Renken, “In-situ surface and gas phase
      analysis for kinetic studies under transient conditions “ Applied
      catalysis A: General 151, 223-246 (1997).
    [24] A. E. Aksoylu, D L. Trimm, “ Structure / activity relationships in
      coprecipitated nickel-alumina catalysts using CO2 adsorption and
      methanation”, Applied Catalysis A: General 145, 185-193 (1996).
    [25] M. Yamasaki, H. Habazaki, T. Yoshida, E. Akiyama, A. Kawashima, “
      Compositional dependence of the CO2 methanation activity of Ni/ZrO2
      catalysts prepared from amorphous Ni-Zr alloy precursors” Applied
      Catalysis A: General 163, 187-197 (1997).
    [26] M Le Bras, M Agounaou, L Gengembre, H Baussart, JM Leroy, “ Influence of
      a reduction process on the catalytic performances of BixGd1-xVO4 catalysts   for the hydrogenation of carbon dioxide”, J. Chim. Phys., 93, 331-354  
      (1996).
    [27] 袁中新, 洪崇軒,”溫室氣體二氧化碳之常溫光催化還原技術研究”, 行政院環境保
      護署 (2002).
    [28] G.R. Dey, A.D. Belapukar, K. Kishore, “ Photo-catalytic reduction of
      carbon dioxide to methane using TiO2 suspension in water”, J.
      Photochemistry and Photobiology A: Chemistry 163, 503-508 (2004).
    [29] P.E. Matijevic, “Colloid Science of Composite Systems”, in Science of
      Ceramic Chemical Pcocessing, Edited by L.L. Hench and D.R. Ulrich. Wiley,
      New York, 463-481 (1986).
    [30] Horry Robbins, “The Preparation of Mn-Zn Ferrite by Co- precipitation”,
      Proceeding ICF4, Japan, 7-10 (1980).
    [31] K. Oda, T. Yoshio, K. Hirata, K. O-Oda and K. Takahashi, “Preparation of
      Barium Ferrites from Metal Alkoxide”, J. Jpn. Soc. Powder Metal, 29(5),
      170-175 (1982).
    [32] M. Kumazawa, H. M. Cho, E. Sada, “Hydrothermal Synthesis of barium
      ferrite fine particles from goethite”, Champman &Hall, 5247-5250 (1993).
    [33] A. Clearfield, A. M. Gadalla, W. H. Marlow and T. W. Livingston,
      “Synthesis of Ultrafine Grain Ferrites”, J. Am. Ceram. Soc., 72(10),
      1798-1792 (1989).
    [34] 林文豪, 錳鋅鐵氧磁體粉末之製備、燒結性及其燒結體之研究,國立成功大學材料科
      學及工程研究所博士論文 (2000).
    [35] 要之勤, 水熱法合成(MnxZn1-x)Fe2O4鐵氧磁體粉末之特性研究,國立成功大學材料科
      學及工程研究所學士論文(2002).
    [36] 王能誠,二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究,國立成功大學材料科學及
      工程研究所碩士論文(2001).
    [37] 潘俊宏, 錳鋅鐵氧磁體應用於二氧化碳甲烷化之研究, 國立成功大學材料科學及工程
      研究所碩士論文 (2004)
    [38] 林碧洲, “石油化學品之應用”, 中國石油學會, 85-86 (1982).
    [39] C.E. Kupchella, M.C. Hyland, “Environmental Science: living within the
      system of nature,” 2nd edn., Allyn and Bacon, Massachusetts, 25-26 (1989).
    [40] B.J. Nebel, “Environmental Science: the way the world works ,” 3rd
      edn., Prentice-Hall, New Jersey, 336, (1990)
    [41] I. Tomoyuki, “Highly Effective Compounds by Using Newly Developed Multi-
      Functional Composite Catalysts”, Conference on Industrial Waste
      Minimization and Sustainable Development’97, 565-575 (1997).
    [42] K. Iwata, Y. M. Sun, S. Suda,” A recovery of Carbon Oxides by
      Methanation Reaction Through a Pressure-Temperature Swing Proc- Ess by
      Applying Active Protium in the Fluorinated Metal Hydride”, Inter. J.
      Hydrogen Energy, 24, 251-256 (1999).
    [43] Chun-Lei Zhang, Shuang Li, Tong-Hao Wu and Shao-Yi Peng, “Reduction of
      Carbon Dioxide into Carbon by the Active Wustite and the Mechanism of the
      Reaction”, Mater. Chem. and Phys., 58, 129-145 (1999).
    [44] Birringer R. et al.,Trans, Jpn. Inct, Metal. Suppl., 29 (1986)
    [45] 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局 (2002).
    [46] 蔣孝澈, 陳光龍, 化工, 第46卷, 第3期, p.67 (1999).
    [47] 劉仲明, 郭東瀛, ”奈米材料,”經濟部工業局 (2002).
    [48] 吳國卿,董玉蘭,“奈米粒子材料的觸媒性質,” 化工資訊, 13, 42 - 46 (1999).
    [49] G. W. Morey, Hydrothermal Synthesis, J. Am. Ceram. Soc., 36, 279 (1953).
    [50] L. M. Demetsyanets, A. N. Lopachev, Some Problems of Consaltants Bureau,
      London Press, 1 (1973).
    [51] D. J. Watson, C. A. Randall, R. E. Newnham, J. H. Adairm, “Hydrothermal   Formation Diagram in the Lead Titanate System”, in Ceramic Powder Sci.Ⅱ,
      Am. Ceram. Soc. Inc., 154 (1988).
    [52] T. Sugimoto, “Preparation of Mono-Dispered Colloidal Particles”,
      Advances in Colliod and Interface Sci., 28 (1987).
    [53] A. Matthews, “The Crystallization of Anatase and Rutile from Amorphous
      Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61,
      410 (1976).
    [54] W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceremics Powders”,
      Ceram. Bull., 67 [10], 1673 (1988).
    [55] R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium
      Titanate Thin Film on Titanium Metal Powder” J. Mater. Sci. Lett., 14,
      600 (1995).
    [56] Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of
      Ultrafine BaTiO3 Powders”, J. Mater Res., 8, 1784 (1993).
    [57] Wu Mingmei, Xu Ruren, Shou Hua Feng., “The Influence of Anions on the
      Products of BaTiO3 Under Hydrothermal Conditions”, J. Mater. Sci., 31,
      6201 (1996).
    [58] S. Wada, T. Suzuki, T. Noma, “Preparation of Barium Titanate Fine
      Particles by Hydrothermal Method and Their Characterization” J. Ceram.
      Soc. Jpn., 103, 1220 (1995).
    [59] A. Chittofratt and E.Matijevic, “Uniform Particlefs o Zinc-Oxide of
      Different Morphologies”, Colloids and Surf., 48, 65, (1990).
    [60] 史宗淮, 水熱法合成鋇鐵氧磁粉之研究, 國立清華大學化工研究所博士論文,
      (1991).
    [61] J. Trindade, D. Pedrosa de Jesus, P. Óbrien, “The Preparation of Zinc
      Oxide and Zinc Sulfide Powders by Controlled. Precipitation From Aqueous
      Solutions”, J. Mater. Chem., 10, 1611 (1994).
    [62] C. H. Lu., W. J. Hwang,“Preparation of Pb(Zr,Ti)O3 – Pb(Ni1/3Nb2/3) O3
      Powder from Hydrothermally-Treated Precursors,” Mater. Lett., 27, 229
      (1996).
    [63] S. T. Chung, K. Nagata, H. Igarashi, “ Thermal Hysteresis of
      Pyrpelectric signal of LATGS crystals”, Ferroelectrics, 94, 43-47 (1989).
    [64] D. Elwell and H. J. Schell,” Crystal Groeth from High-Temperature
      Solutions”, Academic Press, Inc., 150 (1975).
    [65] T. Sugimoto,” Preparation of Monodispered Colloidal Particles”,
      Advances in Colloid and Interface Sci., 65, 28 (1987).
    [66] O. Sohnel and J. Garside,” Precipitation”, Botterworth-heinemann,
      Oxford, UK (1992).
    [67] 汪健民等, “陶瓷技術手冊”, 經濟部技術部、中華民國粉末冶金學會、中華民國
      產業發展協進會出版 (1994).
    [68] J. R. Smith, J. A. Appelbaum et al., “Theory of Chemisorption”, 19
      (1980).
    [69] 張有義, 郭蘭生, “膠體及介面化學入門”, 高立圖書有限公司, 125-164 (1997).
    [70] 廖聖茹, 黃依蘋, 林仁章, 黃瑞呈, “多孔性奈米材料比表面積/孔隙度檢測技
      術”, 材料工業材料雜誌, 190, 115-123 (2002).
    [71] King D. A., Woodruff D.P., The Chemical Physics of Solid Surface and
      Heterogeneous Catalysis (1981).
    [72] “行業污染特性手冊第四冊化工類一”, 行政院環保署空氣品質保護與噪音管制處
      (1996).
    [73] T. Kodoma, M. Tabata, K. Tominaga, T. Yoshida, Y. Tamaura,
      “Decomposition of CO2 and CO into carbon with active wustite prepared
      from Zn(II)-bearing ferrite”, J. Mater. Sci., 28, 547-552 (1993).

    下載圖示 校內:2006-07-22公開
    校外:2006-07-22公開
    QR CODE