| 研究生: |
顏崇晏 Yan, Chong-Yan |
|---|---|
| 論文名稱: |
遮煙試驗爐之流場及熱傳數值模擬分析 Numerical Simulation of Flow Field and Heat Transfer on Air Leakage Test Furnace |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 遮煙試驗爐 、離心式風機 、洩漏量 、加熱柱 、溫度 |
| 外文關鍵詞: | air leakage furnace, turbine, air leakage, heating device, temperature |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用計算軟體進行遮煙試驗爐流場及溫度場分析。探討離心式風機與加熱柱於不同的排列下對於觀測點上的壓力及溫度之影響以便有效地控制試驗爐之溫度符合法規中規定的範圍內。本論文採用有限元素法(Finite Element Method)之分析軟體ANSYS FLUENT 14.5並採用SIMPLE Scheme進行模擬。
在程式驗證方面,進行三維空穴流流場及三維自然對流流場模擬,以確保該軟體於流場、熱傳導、熱對流上均有一定的可靠性與準確性。在物理探討方面,研究物理模型則參照成功大學防火安全研究中心提供之遮煙試驗爐之幾何模型,由補氣口注入常溫空氣並經由加熱柱加熱,利用離心式風機帶動艙體內之流體循環以達到所求之溫度範圍,並於艙體安裝試驗門後觀察其洩漏量於常溫時是否能達到法規之要求,以及利用加熱柱達到所需之溫度並探討加熱柱之排列對溫度分佈之影響。
模擬結果顯示,加熱柱之密度影響流體流動難易度,同時適當的加熱柱排列方式能有效地提高艙體溫度達到要求。
This paper is to investigate the flow field and temperature distribution on an air leakage furnace by numerical simulations. The performance on temperature distribution in an air leakage furnace under different turbines and heating devices are studied. The ANSYS FLUENT 14.5 with SIMPLE scheme is used in this study.
First two test cases, three-dimensional cavity flow and three-dimensional natural convection, are preformed to make sure the numerical results in flow field, heat transfer, and heat convection are reliable. Then the flow field and temperature distribution in the air leakage furnace, provided by the Fire Protection and Safety Research Center, NCKU, are investigated. This furnace uses turbines to make the temperature distribution more uniformly in the tank while the flow is heated to reach to 473K (200°C). The amount of air leakage under different sizes of holes are also computed. The computed results are well compared to the experimental data. Finally, the influence on temperature distribution under different heating devices is investigated.
We found out that a suitable heating device could efficiently heat the temperature in the furnace up to 473K (200°C).
[1] ANSYS FLUENT , Inc. ANSYS 12.1,2012
[2] Chinese National Standards CNS15038, “Method of Test for Evaluating Smoke Control Performance of Doors Buildings,” The Bureau of Standards, Metrology and Inspection, M. O. E. A. , ROC, 2006.
[3] Sudo, M. , Tamaka T. , Yoshikawa T. , and Nakamura K. , “Smoke Leakage
Test of Smoke Proof Fire Shutter,” Conference Paper, Architecture
Institute of Japan (AIJ), Kyushu branch, 1998.
[4] Yamana, T. , “Smoke Leakage Test of Fire Damper,” Conference Paper,
Architecture Institute of Japan (AIJ), 2001.
[5] Yamana, T. , Nishino, K. ,” Smoke Leakage Test on Privention of Smoke Seet,” Conference Paper, Architecture Institute of Japan (AIJ), 2002.
[6] 古智杰, ”遮驗試驗爐流場之數值模擬” 國立成功大學航空太空工程所 碩 士論文, 2014年6月.
[7] C. Shu, L. Wang, Y. T. Chew, ”Numerical Computation of Three-Dimensional Incompressible Navier-Stokes Equations in Primitive Variable Form by DQ Method,” Int. J. Numer. Meth. Fluids, Col. 43, pp. 1543-1557, 1990.
[8] T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, “A Numerical Study of Three-Dimensional Natural Convention in A differentially Heated Cubical Enclosure, ” Int. J. Heat and Mass Transfer Vol. 34, No. 76, pp. 1543-1557, 1990.
[9] CEN, Eurcode 1:Action on structures part 1.2:General Action - Actions on structures exposed to fire BS EN 1991 - 2:2002, Brussels: CEN.
[10] A. F. Mills, Basic heat and mass transfer, Irwin, UAS, 1995.
[11] B.E Launder and D.B. Spalding, ”The Numerical Computation Of Turbulent Flows,” Computer Methods In Applied Mechanics And Engineering 3, pp. 269- 289,1974.
校內:2020-06-21公開