簡易檢索 / 詳目顯示

研究生: 武氏香
Huong, Vu Thi
論文名稱: 利用海膽狀金奈米粒子修飾氧化亞銅(Cu2O)以提高二氧化碳還原中的光電催化活性之研究
Study of Utilization of Gold Sea-Urchin-Shaped Nanoparticles Decorated on Cuprous Oxide (Cu2O) for Enhancement of Photoelectrocatalytic Activity in Carbon Dioxide Reduction
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 表面電漿子金屬 - 半導體光催化劑金海膽狀奈米粒子氧化亞銅二氧化碳還原
外文關鍵詞: Plasmonic metal-semiconductor photocatalysts, Gold sea-urchin-shaped nanoparticles, Cuprous Oxide, Carbon dioxide reduction
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    有大量的文獻闡述金奈米粒子(GNPs)在光電化學(PEC)應用中具有很大的潛力,因為它們藉由控制其尺寸和形狀來調節光催化性能。在這項研究中,我們通過對環境友善的方法利用檸檬酸鈉成功地製造了GNPs。並且通過不同濃度的對苯二酚將GNPs形狀轉變成金海膽狀奈米顆粒(GSU-NPs)。在成功合成GNPs和GSU-NPs後,這些納米顆粒被鑲嵌在具有不同形態的截斷立方,立方八面體,截短八面體和八面體的氧化亞銅(Cu2O)納米顆粒上。並通過X光射線繞射(XRD),高分辨率透射電子顯微鏡(HR-TEM),掃描電子顯微鏡(SEM),紫外-可見-近紅外測量(UV-Vis-NIR),循環伏安法(CV),線性掃描伏安法(LSV),光致發光(PL) 等量測分析得到GNP和GSU-NPs和Cu2O納米顆粒的結果及性質。最後,使用氣相層析儀(GC)分析氣體產物和液相層析儀(HPLC)來分析還原二氧化碳所得到的液相產物,以上分析構成了PEC CO2還原的系統。
    結果表示GSU-NPs,Cu2O納米顆粒的尺寸和形狀的穩定性。此外,結果表示截短的Cu2O具有最好的光電催化活性並且當GNPs和GSU-NPs鑲在{100}面上會比在{111}面上具有更好的光電催化活性。藉由此項研究,可以深入了解表面電漿子在金屬 - 半導體光催化中扮演的角色以及如何增強光電催化作用,並經由進一步的檢測及分析來評估納米顆粒對CO2還原能力為何。

    ABSTRACT
    There are plenty sources of literature review indicating that Gold nanoparticles (GNPs) hold great potential in photoelectrochemical (PEC) applications due to their tunable photocatalytic properties by controlling their size and shape. In this study, we successfully fabricated GNPs by an environmental-friendly method utilizing Trisodium Citrate. GNPs shape then was turned into Gold sea-urchin-shaped nanoparticles (GSU-NPs) by different amount of Hydroquinone. After successfully synthesizing of GNPs and GSU-NPs, these nanoparticles were decorated on Cuprous Oxide (Cu2O) nanoparticles with different morphologies of Truncated Cubic, Cuboctahedral, Truncated Octahedral and Octahedral. The resulting GNPs and GSU-NPs and Cu2O nanoparticles were characterized by X-Ray Diffraction, High Resolution-Transmission electron microscopy (HR-TEM), Scanning electron microscope (SEM), Ultraviolet-visible-near infrared measurements (UV-Vis-NIR), Cyclic Voltammetry, Linear Sweep Voltammetry, Photoluminescence. Finally, a system of PEC CO2 reduction will be formed with a Gas Chromatography (GC) used for analyzing gases products and High Performance Liquid Chromatography (HPLC) for liquid products of CO2 reduction.
    The results indicate the stability in size and shapes of GSU-NPs, Cu2O nanoparticles. In addition, the highest performance in photoelectrocatalytic activity belonging to truncated Cu2O indicated that photoelectrocatalytic activity will be more preferential when GNPs and GSU-NPs decorated on {100} facets than {111} facets. By this study, an in-depth insight into the role of plasmonic metal-semiconductor photocatalysts in the enhancement of photoelectrocatalytic activities was demonstrated. Further tests will be carried out to evaluate the CO2 reduction ability of fabricated nanoparticles.

    TABLE OF CONTENTS 摘要 I ABSTRACT II ACKNOWLEDGEMENTS III TABLE OF CONTENTS IV LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER I: INTRODUCTION AND MOTIVATION 1 1.1 General introduction 1 1.2 Background and Motivation 3 1.3 Objectives of study 4 CHAPTER II: LITERATURE REVIEW 6 2.1 Photocatalytic CO2 reduction 6 2.2 Electrochemical CO2 reduction 8 2.2.1 Metal- based electrochemical CO2 reduction 9 2.2.2 Semiconductor- based electrochemical CO2 reduction 11 a. Structure design 12 b. Size design 12 c. Composition design 13 2.3 Photoelectrochemical CO2 reduction 14 2.3.1 CO2 reduction using semiconductor photocathode 14 2.3.2 Faradaic efficiency of CO2 reduction 15 2.4 Plasmonic metal/ semiconductor junction in photoelectrocatalysis 16 2.4.1 Light scattering 17 2.4.2 Hot electron transfer 19 2.4.3 Near field: Light concentration and Plasmon- induced resonance energy transfer (PIRET) 19 2.5 Background of materials 21 2.5.1 Cuprous oxide (Cu2O) 21 a. Structure and properties of Cu2O 21 b. Methods for synthesis of Cu2O 22 2.5.2 Gold nanoparticles 23 CHAPTER III: EXPERIMENTAL SECTION 25 3.1 Experimental materials 25 3.2 Synthesis of Cuprous Oxide (Cu2O) with different morphologies 27 3.3 Synthesis of Gold nanoparticles 28 3.4 Synthesis of Gold sea-urchin-shaped nanoparticles 30 3.5 Decoration of Gold nanoparticles and Gold sea-urchin-shaped nanoparticles onto Cu2O with different morphologies 31 3.6 Experimental setting for photoelectrochemical CO2 reduction 32 3.7 Characterizations 34 3.7.1 X-ray Diffraction (XRD) 34 3.7.2 Scanning Electron Microscopy (SEM) 34 3.7.3 High resolution- Transmission electron microscopy (HRTEM) 35 3.7.4 UV-vis measurement 36 3.7.5 Photoluminescence (PL) 37 3.7.6 Cyclic voltammetry 37 3.7.7 Linear Sweep Voltammetry 38 3.7.8 Photoelectrochemical CO2 reduction 39 CHAPTER IV: RESULTS AND DISCUSSION 40 4.1 Synthesis of Cu2O nanoparticles with four different morphologies 40 4.1.1 Different morphologies of Cu2O nanoparticles 40 4.1.2 Crystallinity of Cu2O nanoparticles 42 4.2 Synthesis of GNPs and GSU-NPs 43 4.2.1 Effect of temperature on synthesis of GNPs 43 4.2.2 The influence of Hydroquinone to the formation of GSU-NPs 44 4.2.3 Crystallinity of GNPs and GSU-NPs 46 4.3 Decoration of GNPs and GSU-NPs onto Cu2O 48 4.3.1 Modifying Cu2O by UV/Ozone treatment 48 4.3.2 Morphology 49 4.3.3 The influence of washing step before decorating GNPs or GSU-NP 50 4.3.4 Crystallinity and chemical components 51 4.4 Optical characterization 52 4.4.1 Ultraviolet-Visible absorption spectra 52 4.4.2 Bandgap estimation of Cu2O from absorption spectra 55 4.4.3 Photoluminescence (PL) 57 4.5 Electrical properties 59 4.5.1 Cyclic Voltammetry 59 4.5.2 Linear Sweep Voltammetry 61 CHAPTER V: CONCLUSIONS AND RECOMMENDATION 63 5.1 Synthesis materials with tunable morphologies 63 5.2 Properties of material 63 5.3 Photoelectrocatalytic activity 64 5.4 Possible mechanisms of plasmonic enhancement in photoelectrochemical cell 64 5.5 Recommendation 65 REFERENCES 66

    REFERENCES

    [1] T. S. Ashton, “The Industrial Revolution (1760–1830).” 1948.
    [2] T. Arnold et al., “Nitrogen trifluoride global emissions estimated from updated atmospheric measurements,” Proc. Natl. Acad. Sci., vol. 110, no. 6, pp. 2029–2034, 2013.
    [3] J. F. Dean et al., “Methane Feedbacks to the Global Climate System in a Warmer World,” Rev. Geophys., vol. 56, no. 1, pp. 207–250, 2018.
    [4] T. C. Bond et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res. Atmos., vol. 118, no. 11, pp. 5380–5552, 2013.
    [5] J. L. Ramseur, “U . S . Carbon Dioxide Emission Trends and the Role of the Clean Power Plan,” Congr. Res. Serv., 2017.
    [6] Iea.org. IEA, “‘2014 Key World Energy Statistics,’” 2015.
    [7] U. N. D. P. and W. E. Council, “‘Energy and the challenge of sustainability,’” 2000.
    [8] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.
    [9] L. O. Grondahl, “The Copper-Cuprous-Oxide RectNer and Photoelectric Cell,” Rev. Mod. Phys., vol. 5, p. 141, 1932.
    [10] M. J. C. A.O. Musa, T. Akomolafe, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells, vol. 51, p. 305—316, 1998.
    [11] S. S. M. Xiaobo Chen, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev, vol. 107, no. 7, pp. 2891–2959, 2007.
    [12] A. F. L. D. Chen, X. Zhang, “Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals,” J. Mater. Chem. A, 2015.
    [13] S. P. P. Lanzafame, G. Centi, “Catalysis for biomass and CO2 use through solar Production, energy: opening new scenarios for a sustainable and low-carbon chemical,” Chem. Soc. Rev. 43, pp. 7562–7580, 2014.
    [14] W. W. D. S. Das, “A review on advances in photocatalysts towards CO2 conversion.,” Rsc Adv. 4, pp. 20856–20893, 2014.
    [15] K. Dong and X. Wang, “CO2 Utilization in the Ironmaking and Steelmaking Process,” pp. 1–10, 2018.
    [16] B.Aurian-BlajeniM.HalmannJ.Manassen, “Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes,” Sol. Energy Mater., vol. 8, no. 4, pp. 425–440, 1983.
    [17] J. Augustynski, P. Kedzierzawski, and B. Jermann, “Electrochemical reduction of CO2 at metallic electrodes,” Stud. Surf. Sci. Catal., vol. 114, no. 3, pp. 107–116, 1998.
    [18] M. Halmann, “Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells,” vol. 275, pp. 115–116, 1978.
    [19] S. K. & K. H. Tooru inoue, Akira Fujishima, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.” Nature, pp. 637–638, 1979.
    [20] J. Y. J. Low, B. Cheng, “Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review,” Appl. Surf. Sci, pp. 392, 658, 2017.
    [21] S. S. Hori, Y., K. Kikuchi, “Production of CO and CH4 in Aqueous, Electrochemical Reduction of CO2 at Metal-Electrodes in Hydrogencarbonate Solution,” Chem. Lett., vol. 11, pp. 1695–1698, 1985.
    [22] A. J. B. David W. DeWulf, Tuo Jin, “Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions,” J. Electrochem. Soc, vol. 136, no. 6, pp. 1686–1690, 1989.
    [23] F. R. Keene, “Electrochemical and Electrocatalytic Reactions of Carbon Dioxide,” Ed. by B. P. Sullivan, K. Krist, H. E. Guard Elsevier, Amsterdam, pp. 1–16, 1993.
    [24] Z. Sun, T. Ma, H. Tao, Q. Fan, and B. Han, “Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials,” ChemPR, vol. 3, no. 4, pp. 560–587, 2017.
    [25] L. Zhang, Z. Zhao, and T. Wang, “Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide,” Chem. Soc. Rev., vol. 47, pp. 5423–5443, 2018.
    [26] Z. H. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat Chem, vol. 5, no. 4, pp. 263–75, 2013.
    [27] Z. Z. and H. Z. Xiao Huang, “Metal dichalcogenide nanosheets: preparation, properties and applications,” Chem. Soc. Rev., no. 5, 2013.
    [28] J. A. and A. S.-K. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Kra´l, “Robust carbon dioxide reduction on molybdenum disulphide edges,” Nat. Commun, vol. 5, p. 4470, 2014.
    [29] S. Zhang, P. Kang, and T. J. Meyer, “Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate,” no. c, pp. 3–6, 2014.
    [30] C. W. Li and M. W. Kanan, “CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films,” J. Am. Chem. Soc., vol. 134, no. 17, pp. 7231–7234, 2012.
    [31] D. B. T. Cottineau, M. Morin, “Modification of p-type Silicon for the Photoelectrochemical Reduction of CO2,” Electrochem. Soc., vol. 19, no. 35, pp. 1–7, 2009.
    [32] K. D. and J. S. L. Youn Jeong Jang, Ji-Wook Jang,b Jaehyuk Lee, Ju Hun Kim, Hiromu Kumagai, Jinwoo Lee, Tsutomu Minegishi, Jun Kubota, “Selective CO production by Au coupled ZnTe/ ZnO in the photoelectrochemical CO2 reduction system,” Energy Environ. Sci., vol. 8, no. 12, pp. 3597–3604, 2015.
    [33] S. I. Jeon, J. H., Mareeswaran, P. M., Choi, C. H., & Woo, “Synergism between CdTe semiconductor and pyridine – photoenhanced electrocatalysis for CO2 reduction to formic acid,” RSC Adv., vol. 4, no. 6, pp. 3016–3019, 2014.
    [34] K. Kaneco, S., Ueno, Y., Katsumata, H., Suzuki, T., & Ohta, “Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol,” Chem. Eng. Journal, 148(1), 57–62, vol. 148, no. 1, pp. 57–62, 2009.
    [35] J. (2014). E. C. reduction on C. copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Kas, R., Kortlever, R., Milbrat, A., Koper, M. T. M., Mul, G., & Baltrusaitis, “Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons,” Phys. Chem. Chem. Phys., vol. 16, no. 24, pp. 12194–12201, 2014.
    [36] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, “Photochemical and Photoelectrochemical Reduction of CO2,” Annu. Rev. Phys. Chem., vol. 63, no. 1, pp. 541–569, 2012.
    [37] N. Wu, “Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review,” Nanoscale, vol. 10, no. 6, pp. 2679–2696, 2018.
    [38] E. T. Schaadt, D. M., Feng, B., & Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, no. 6, 2005.
    [39] E. T. Derkacs, D., Chen, W. V., Matheu, P. M., Lim, S. H., Yu, P. K. L., & Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett., vol. 93, no. 9, p. 091107, 2008.
    [40] T. Tian, Y., & Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2,” Chem. Commun., no. 16, p. 1810, 2004.
    [41] T. Tian, Y., & Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles,” J. Am. Chem. Soc., vol. 127, no. 20, pp. 7632–7637, 2005.
    [42] N. C. Clavero, Photonics. 2014.
    [43] A. Atwater, H. A., & Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, no. 3, pp. 205–213, 2010.
    [44] S. Green, M. A., & Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics, vol. 6, no. 3, pp. 130–132, 2012.
    [45] M. L. Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater., vol. 9, no. 3, pp. 193–204, 2010.
    [46] D. B. Linic, S., Christopher, P., & Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater., vol. 10, no. 12, pp. 911–921, 2011.
    [47] S. K. Cushing et al., “Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor,” J. Am. Chem. Soc., vol. 134, no. 36, pp. 15033–15041, 2012.
    [48] S. Nanoparticles, “Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal @ TiO2 Core-shell”
    [49] N. Cushing, S. K., Li, J., Meng, F., Senty, T. R., Suri, S., Zhi, M., … Wu, “Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor,” J. Am. Chem. Soc., vol. 134, no. 36, pp. 15033–15041, 2012.
    [50] A. P. and E. R. . Ruiz E., Alvarez S., “‘Electronic structure and properties of Cu2O,’” Phys. Rev, vol. B 56, p. 7189–7196., 1997.
    [51] M. B. J. and W. G. . Scanlon D.O., “‘Modeling the polaronic nature of p-type defects in Cu2O: The failure of GGA and GGA+ U,’” J. Chem. Phys, vol. 131, pp. 1–8, 2009.
    [52] S. G., “Nanotechnology: Principles and Fundamentals,” Wiley-VCH, Ger., 2008.
    [53] J. C. A. Daltin, A. Addad, “Potentiostatic deposition and characterization of cuprous oxide films and nanowires” J. Cryst. Growth, vol. 282 No 3-4, p. 414, 2005.
    [54] B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation,” Thin Solid Films, vol. 396, no. 1–2, pp. 90–96, 2001.
    [55] P. Liu, Z. Li, W. Cai, M. Fang, and X. Luo, “Fabrication of cuprous oxide nanoparticles by laser ablation in PVP aqueous solution,” RSC Adv., vol. 1, no. 5, pp. 847–851, 2011.
    [56] D. A. Firmansyah, T. Kim, S. Kim, K. Sullivan, M. R. Zachariah, and D. Lee, “Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis,” Langmuir, vol. 25, no. 12, pp. 7063–7071, 2009.
    [57] K. Suzuki, N. Tanaka, A. Ando, and H. Takagi, “Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method,” J. Am. Ceram. Soc., vol. 94, no. 8, pp. 2379–2385, 2011.
    [58] R. Vijaya Kumar, Y. Mastai, Y. Diamant, and A. Gedanken, “Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix,” J. Mater. Chem., vol. 11, no. 4, pp. 1209–1213, 2001.
    [59] I. J. G. N. B. Yadav, A. Yadav, “Synthesis of Nanostructured Cuprous Oxide and Its Performance as Humidity and Temperature Sensor,” Mater. Sci. Eng. 1, M16, 2009.
    [60] Q. Huang, F. Kang, H. Liu, Q. Li, and X. Xiao, “Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis,” J. Mater. Chem. A, vol. 1, no. 7, pp. 2418–2425, 2013.
    [61] D. A. Marie-Christine Daniel, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev, vol. 104 (1), p. pp 293–346, 2004.
    [62] Y. Y. and W.-J. Gammons C H, “The disproportionation of gold(I) chloride complexes at 25 to 200 °C,” Geochim. Cosmochim. Acta, p. 83, 1971.
    [63] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. August, pp. 824–830, 2003.
    [64] N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Anal. Chem., vol. 80, no. 17, pp. 6620–6625, 2008.
    [65] S.-H. C. and W.-M. Z. Yen Hsun Su, Sheng-Lung Tu, Shih-Wen Tseng, Yun-Chorng Chang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale, vol. 2, pp. 2639–2646, 2010.
    [66] L. T. Kate C. Shouse, Jonathan L. Ramseur, “EPA’s Affordable Clean Energy Proposal,” 2018.
    [67] T. K. M. (eds. . Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, “Climate Science Special Report: Fourth National Climate Assessment, Volume I,” 2017.
    [68] S. R. Lingampalli, M. M. Ayyub, and C. N. R. Rao, “Recent Progress in the Photocatalytic Reduction of Carbon Dioxide,” 2017.
    [69] J.-M. L. and R. Ziessel, “Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation,” pp. 701–704, 1982.
    [70] X. Li, J. Wen, J. Low, Y. Fang, and J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, vol. 57, no. 1. 2014.

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE