研究生: |
吳昇燁 Wu, Sheng-ye |
---|---|
論文名稱: |
非線性模糊-H∞控制器之設計研究 A Study on Fuzzy-H∞ Controller Design for Nonlinear System |
指導教授: |
黃正能
Huang, Cheng-neng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 強健控制 、線性矩陣不等式 、模糊控制 |
外文關鍵詞: | LMIs, Fuzzy control, H∞ control |
相關次數: | 點閱:101 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
某些非線性受控系統中都含有未知的元素,諸如未知系統參數(unknown parameter)或系統內部改變的不確定性(uncertainty),因此很可能造成控制系統的工作性能下降,並且使得針對系統追蹤性能的目標不易達成,甚至造成閉迴路系統不穩定。
H∞控制器的特色是可使受控體在不確定外擾作用及系統參數變動情況下,仍可維持系統的穩定性與強健性。而模糊控制器的優點則是可以使用知識庫的模糊規則來設計控制器,不需要明確的數學模式。本文結合模糊理論與H∞控制理論的優點,而發展出穩定且具有高性能的模糊-H∞控制器。並且利用線性矩陣不等式(LMIs)來驗證閉迴路系統是否穩定,以及驗證可否達到奇異值小於一定數值之性能要求。
最後,本文針對機械手臂系統作為電腦模擬控制對象,來驗證所設計之模糊-H∞控制器之可行性。經由模擬結果顯示可達到不錯的追蹤性能,證明確實能使系統有良好的追蹤性能,並能有效降低外系統矩陣不確定性因素的影響。
A nonlinear dynamic system usually contains some uncertainties, such as unknown system parameters or uncertainties, which may make desired performance hard to be achieved or even cause the close-loop system unstable.
The feature of H∞ controller is to keep the system stable and robust under the presence of system disturbances or uncertainties. The merit of fuzzy control is to apply fuzzy knowledge base and fuzzy controller is to apply fuzzy knowledge base and fuzzy rules on its control design, which doesn’t require exact math model. In this paper, we will combine fuzzy theory with H∞ theory to develop a Fuzzy-H∞ controller which has high performance. And we will use linear matrix inequalities (LMIs) to attest whether the close-loop system is stable and to achieve.
Finally, a nonlinear robot system is studied as an example in this research to attest the feasibility of the proposed Fuzzy-H∞ controller. The computer simulation results reveal that the designed Fuzzy-H∞ controller in this example can achieve the desired objectives with good tracking performance by effectively rejecting the uncertain matrices of system in this nonlinear robot system.
[1] Chand, Sujeet and Chiu, Stephen,“Robustness Analysis of Control System with Aircraft Roll Control”, Proc. Of AIAA , pp.1676-1679,1991.
[2] C. W. Tao and J. S. Taur, “Robust Fuzzy Control for a Plant With Fuzzy Linear Model”,IEEE Transactions on Fuzzy Systems, Vol. 13, No. 1, February 2005
[3] C.N. Hwang, “Tracking of controllers for robot manipulators”, Master Dissertation, Michigan state University, 1986
[4] C.N. Hwang, “Synthesis Procedure for Nonlinear Systems”, Proc. Natl. Sci. Counc. ROC(A) Vol. 17 ,No. 4,. pp. 279-294 ,1993
[5] C.N. Hwang, “Formulation of H2 and H∞ Optimal Control Problems – A Variational Approach”, Journal of the Chinese Institute of Engineering’s, Vol. 16, No. 6, pp.853-866, 1993.
[6] Chen,Bor-Sen and Lee,Ching-Hsiang and Hang,Yeong-Chan, ”H∞ Tracking Design of Uncertain Nonlinear SISO Systems:Adaptive Fuzzy Approach”, IEEE, Transaction on Fuzzy Systems, VOL.4, NO.1, February 1996.
[7] Doyle, J.C.,Glover, K., Khargonekar, P.P. and Francis, B.A., “State-Space Solutions to Standard H2 and H∞ Control Problems”, IEEE Transactions on Automatic Control, Vol. 34, No.8, pp.831-847, 1989.
[8] H. O. Wang, K. Tanaka and M. Griffin “Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model”, IEEE International Conference on Fuzzy Systems, v 2, International Joint Conference on the 4th IEEE International Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium, p 531-538, 1995
[9] Hua O. Wang, Member,IEEE, Kazuo Tanaka,Member,IEEE, and Michael F. Griffin,Member,IEEE,“An Approach to Fuzzy Control of Nonlinear Systems:Stability and Design Issues”, IEEE Transactions on Fuzzy Systems, Vol. 4,No.1 ,pp.14-23 ,February ,1996
[10] K.R. Lee, E.T. Jeung, H.B. Park, “Robust fuzzy H∞ control for uncertain nonlinear systems via state feedback: an LMI approach”, Fuzzy Sets and Systems, v 120, n 1, p 123-134, May 16, 2001
[11] K. Tanaka, M. Sugeno, “Stability analysis and design of fuzzy control systems”, Fuzzy Sets and Systems 45, pp.135-156 ,1992
[12] K. Tanaka, T. Ikeda, H.O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities”, IEEE Trans. Fuzzy Syatems 4, pp. 1-13 ,1996
[13] Lihua Xie and Carlos E. de Souza. “Robust H∞ control for linear systems with norm bounded time varying uncertainty”, IEEE Trans. Automat. Control 37, pp.1188-1191 ,1992
[14] Mahmoud Chilali and Pascal Gahinet, Member IEEE,“ H∞ Design with Pole Placement Constraints:An LMI Approach”, IEEE Transactions on Automatic control, Vol.41, No.3, pp.358-367 ,March ,1996
[15] Schweppe F.C., “Uncertain Dynamic systems”, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[16] Spong, M. W. and Vidyasagar, M., “Robot Dynamics and Control”,New York : Wiley, 1989.
[17] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory”, SIAM, Philadelphia, PA, 1994
[18] Tseng, C. S. and Chen, B. S.,“Fuzzy Tracking control Design for Nonlinear Dynamic Systems via T-S Fuzzy Model ”, IEEE Trans. on Fuzzy Systems,Vol.9,NO.3,pp.381-392, JUNE 2001.
[19] Tadanari Taniguchi, Kazuo Tanaka, Kazuo Yamafuji and Hua O. Wang, “Nonlinear model following control via Takagi-Sugeno fuzzy model”, Proceedings of the American Control Conference San Diego, California ,pp.1837-1841 ,June ,1999
[20] Usoro, P.B. , et al. , ”Ellipsoidal Set-Theoretic Control Synthesis”, Journal of Dynamic systems, Measurement and Control, Vol.104 ,No.4 ,pp.125-135, 1982
[21] Yang, C.-D., Kuo, Teong-Ming and Tai, Hung-Chun , “H∞ Gain Scheduling Using Fuzzy Rules”, Proceedings of the 35th Cinference on Decision and Control Kobe, Japan. pp.3794, December 1996.
[22] Zames, G., “On H∞ Optimal Sensitivity Theory for SISO Feedback Systems”, IEEE Transactions on Automatic Control, Vol.AC-29, No.1, pp.9-16, 1984.
[23] Zadeh, L. A. , “Fuzzy sets”, Information Contr., vol. 8, pp. 338-353, 1965.
[24] 楊憲東、葉芳柏, ”線性與非線性H∞控制理論”,全華科技圖書股份有限公司,1997。
[25] 孫宗瀛,楊英魁, “Fuzzy 控制:理論、實作與應用”,全華科技圖書股份有限公司,2005