簡易檢索 / 詳目顯示

研究生: 黃儀傑
Huang, I-Chieh
論文名稱: 人腦聽皮層功能性定位中應用試驗間差異數之價值
The value of inter-trial variance in functional localization of human auditory cortex
指導教授: 潘偉豐
Poon, Paul Wai Fung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 218
中文關鍵詞: 功能性分佈腦電圖試驗間變異數聽覺皮層後外側顳皮層
外文關鍵詞: functional localization, electrocorticogram, inter-trial variance, auditory cortex, posterior lateral superior temporal cortex, Heschl’s gyrus
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於語言認知與複雜聲的關係,複雜聲的在人類皮層上的解碼吸引了學者長久以來的興趣。儘管如此,至今解碼的詳細機制仍不清楚,尤其是人腦皮層功能性分佈。現今聲音激發的電位已可以藉由置放於顱內的電極來測得,且是在人清醒的狀態下。我們有機會去分析由我們在美國的合作夥伴(美國愛荷華大學神經外科系)所收集的18名病人的腦電圖。我們問(a) 是否如果不同的聲音 (包含簡單、複雜、自然界的聲音)可以活化大腦顳葉不同的位置? (b) 是否這些特定區域上的反應差異是有用於區分不同的聲音? 為了回答這些問題,我們發展出一套特別的方法進行資料分析。首先,我們對原始資料進行實驗前處理,包含異常數值的移除、校正人工干擾的數值,接著用適應性過濾器(adaptive filter)去獲得訊雜比高的單次試驗的腦電圖。接著我們將(a)訊號的反應強度用平方平均數(RMS)呈現; (b) 背景的試驗間變異數用標準差呈現(SD)。我們觀察平方平均數與標準差的空間性分佈圖,發現是與聲音刺激種類有關。在無聲的情況下,強度與試驗間的變異數將呈現線性關係,這反射出底下的卜瓦松關係。在聲音刺激之下(包含合成的複雜聲,語言或者音樂),平方平均數與標準差的關係會脫離卜瓦松關係,這反映出一些聲音引起的神經動態改變。典型地,有一個較大的區域接近於相對較小且有強大地平均平方數的反應區,且這較大的區域在標準標方面有降低的情形。這個變異數會下降的發現,與聲音刺激之後底下的神經元素進行同向反應或者被抑制一致。在Heschl聽覺皮層其中心部分由強大的平方平均數主導,而旁側的部分側帶區則由強大的標準反應所主導。在後外側顳PLST皮層,有強大標準反應的區域遠離有強大平方平均數反應,.似乎反應出這區域和副側帶區域的角色相似。我們在此總結,由這第一次發表的試驗間標準差是個有用的指標在於研究皮層的功能性分佈,同時也有用於區分複雜聲。實驗結果支持不同部分的大腦顳葉皮層(儘管有些部分重疊)包含於複雜聲的解碼。

    Complex sounds coding in human has attracted long-standing interest due to its relationship with speech recognition. Despite of this, details of the underlying mechanisms remain poorly understood, especially regarding the fundamental question of functional localization in cortex. Sound-evoked potentials are now feasible to be recorded with intracranial electrocorticogram (ECoG) from awake humans of refractory epilepsy. We had the opportunity to get access to such ECoG signals from cortical grid- electrodes of 18 patients (collected in collaboration with the Department of Neurosurgery, Iowa University, USA). We asked: (a) if different sounds (simple, complex and naturally-occurring) would activate different parts of the temporal cortex, and (b) if so, what response metric of the ECoG could be useful for functional localization and hence for the machine-discrimination of sounds. To answer these questions, we developed a special approach of data analysis. First, we rejected response outliers and artifacts, before applying an adaptive filter to separate single trial evoked response from the background EEG. We then characterized (a) the evoked response in terms of its strength (or root-mean-square, RMS value) and (b) the background EEG in terms of its inter-trial variance (or more precisely standard deviation, SD). We observed characteristic spatial patterns of response RMS and SD that were sound-dependent. In silence, RMS and SD levels showed a linear relationship across space reflecting an underlying Poisson process. Upon episodic sound stimulation (both synthetic complex sounds, and speech or music), this RMS-SD relationship deviated from Poisson, reflecting the presence of some sound-induced neural dynamics. Typically, a larger area closed to (but not overlapping with) the more restricted area of strong RMS response, showed a characteristic drop in SD. This finding of a reduced SD or variation in the background EEG is consistent with the activity of the underlying neural elements being synchronized, if not suppressed, by sounds. At the auditory cortex (on Heschl’s gyrus), the medial part (auditory core) was dominated by a strong RMS response, whereas the lateral part (auditory belt) was dominated by a strong SD response. On the posterior lateral superior temporal (PLST) cortex, the regions of strong SD response consistently lied distal to the region of strong RMS response. This distal location, with respect to the core area, likely reflected their role as association processing areas (auditory parabelt). We conclude that the SD response, reported here for the first time, is a useful metric for studying functional localization of the cortex, and therefore potentially useful for the machine-discrimination of complex sounds. Results supported that different parts of the temporal cortex, despite of some functional overlap, are involved in the processing of complex acoustic features.

    Abstract I Chinese Abstract III Acknowledgment V Contents VI List of figures IX Abbreviation XIV 1.Introduction 1 1.1 Response metric outside traditional measures 3 1.2 Functional localization of human auditory cortex 3 1.3 Inter-trial variance in animals 4 1.4 Aim of study 5 2. Materials and Methods 6 2.1 Subjects 6 2.2 Acoustic stimulation 7 2.3 Data recording 8 2.4 Data preprocessing 9 2.4.1 Step 1: rejection of outlying trials based on RMS values 9 2.4.2 Step 2: rejection of local oversized fluctuations 10 2.4.3 Step 3: fixing abnormal small fluctuations with averages of adjacent values 10 2.4.4 Step 4: filtering out high frequency noise with low pass filter 11 2.4.5 Step 5: extracting single trial ECoG from background EEG using adaptive filter 11 2.5 RMS and SD calculation and results display 11 3. Results 14 3.1 Pre-setting analysis condition 14 3.1.1 PLST v.s. HG v.s. non-HG and non PLST 14 3.1.2 Selection of analysis time window in ERP and SD 14 3.1.3 Relationship between ERP and SD 15 3.1.4 Reproducibility of spatial maps 15 3.2 Within single subjects 16 3.2.1 Four response spatial maps to one sound 16 3.2.2 Four response spatial maps to different sounds 16 3.2.3 Two spatial maps for discriminating different sounds 16 3.2.4 Sensitivity to other sound attributes 17 3.3 Across subjects 17 3.3.1 Sensitivity of SD over ERP 17 3.3.2 Hemisphere-related response differences 18 3.4 Spatial relationship between ERP strength and background variation on HG 19 4. Conclusion and Discussion 19 4.1 Biological significance of inter-trial variance 20 4.2 Regional localization based on complex sound property 21 4.3 Left- and Right-hemispheric differences 22 4.4 Inter-subject differences in spatial maps 22 5. Acknowledgement 24 6. References 25 7. Figures 30 8. Table 62 9. Supplementary Figures 63 10. Supplementary Texts 180 11. Appendix 211

    1. C. S. Roy, C. S. Sherrington, On the Regulation of the Blood-supply of the Brain. The Journal of physiology 11, 85-158.117 (1890).
    2. S. Ogawa, Finding the BOLD effect in brain images. NeuroImage 62, 608-609 (2012).
    3. S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America 87, 9868-9872 (1990).
    4. J. Ito, J. Sakakibara, I. Honjo, Y. Iwasaki, Y. Yonekura, Positron emission tomographic study of auditory sensation in a patient with a cochlear implant. Archives of otolaryngology--head & neck surgery 116, 1437-1439 (1990).
    5. K. M. Green, P. J. Julyan, D. L. Hastings, R. T. Ramsden, Auditory cortical activation and speech perception in cochlear implant users: effects of implant experience and duration of deafness. Hearing research 205, 184-192 (2005).
    6. E. Kang et al., Neural changes associated with speech learning in deaf children following cochlear implantation. NeuroImage 22, 1173-1181 (2004).
    7. H. J. Lee et al., Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hearing research 203, 2-9 (2005).
    8. A. Alavi et al., Mapping of functional activity in brain with 18F-fluoro-deoxyglucose. Seminars in nuclear medicine 11, 24-31 (1981).
    9. S. T. Grafton, PET: activation of cerebral blood flow and glucose metabolism. Advances in neurology 83, 87-103 (2000).
    10. C. Jacquemot, C. Pallier, D. LeBihan, S. Dehaene, E. Dupoux, Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 9541-9546 (2003).
    11. M. Plaza, P. Gatignol, M. Leroy, H. Duffau, Speaking without Broca's area after tumor resection. Neurocase 15, 294-310 (2009).
    12. C. Cantalupo, W. D. Hopkins, Asymmetric Broca's area in great apes. Nature 414, 505 (2001).
    13. D. Caplan, Why is Broca's area involved in syntax? Cortex; a journal devoted to the study of the nervous system and behavior 42, 469-471 (2006).
    14. J. E. Bogen, G. M. Bogen, Wernicke's region--Where is it? Annals of the New York Academy of Sciences 280, 834-843 (1976).
    15. M. A. Howard et al., Auditory cortex on the human posterior superior temporal gyrus. The Journal of comparative neurology 416, 79-92 (2000).
    16. B. Blankertz, S. Lemm, M. Treder, S. Haufe, K. R. Muller, Single-trial analysis and classification of ERP components--a tutorial. NeuroImage 56, 814-825 (2011).
    17. L. C. Parra, C. D. Spence, A. D. Gerson, P. Sajda, Recipes for the linear analysis of EEG. NeuroImage 28, 326-341 (2005).
    18. F. H. Chan, W. Qiu, F. K. Lam, P. W. Poon, M. K. Lam, Evoked potential estimation using modified time-sequenced adaptive filter. Medical & biological engineering & computing 36, 407-414 (1998).
    19. M. Cavinato, J. Rigon, C. Volpato, C. Semenza, F. Piccione, Preservation of auditory P300-like potentials in cortical deafness. PloS one 7, e29909 (2012).
    20. J. L. Krizman, E. Skoe, N. Kraus, Stimulus rate and subcortical auditory processing of speech. Audiology & neuro-otology 15, 332-342 (2010).
    21. D. L. Strait, N. Kraus, E. Skoe, R. Ashley, Musical experience promotes subcortical efficiency in processing emotional vocal sounds. Annals of the New York Academy of Sciences 1169, 209-213 (2009).
    22. T. A. Hackett, Information flow in the auditory cortical network. Hearing research 271, 133-146 (2011).
    23. B. C. Fullerton, D. N. Pandya, Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. The Journal of comparative neurology 504, 470-498 (2007).
    24. T. A. Hackett, T. M. Preuss, J. H. Kaas, Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. The Journal of comparative neurology 441, 197-222 (2001).
    25. H. Nakahara, S. Yamada, T. Mizutani, S. Murayama, Identification of the primary auditory field in archival human brain tissue via immunocytochemistry of parvalbumin. Neuroscience letters 286, 29-32 (2000).
    26. J. P. Rauschecker, S. K. Scott, Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature neuroscience 12, 718-724 (2009).
    27. M. Herdener et al., Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex; a journal devoted to the study of the nervous system and behavior 49, 2822-2833 (2013).
    28. S. E. Petersen, P. T. Fox, M. I. Posner, M. Mintun, M. E. Raichle, Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585-589 (1988).
    29. R. Wise et al., Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain : a journal of neurology 114 ( Pt 4), 1803-1817 (1991).
    30. D. Howard et al., The cortical localization of the lexicons. Positron emission tomography evidence. Brain : a journal of neurology 115 ( Pt 6), 1769-1782 (1992).
    31. B. M. Mazoyer et al., The cortical representation of speech. Journal of cognitive neuroscience 5, 467-479 (1993).
    32. J. R. Binder et al., Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Archives of neurology 52, 593-601 (1995).
    33. J. R. Binder, J. A. Frost, T. A. Hammeke, S. M. Rao, R. W. Cox, Function of the left planum temporale in auditory and linguistic processing. Brain : a journal of neurology 119 ( Pt 4), 1239-1247 (1996).
    34. J. A. Fiez et al., PET Studies of Auditory and Phonological Processing: Effects of Stimulus Characteristics and Task Demands. Journal of cognitive neuroscience 7, 357-375 (1995).
    35. C. J. Price, C. J. Moore, K. J. Friston, Subtractions, conjunctions, and interactions in experimental design of activation studies. Human brain mapping 5, 264-272 (1997).
    36. E. Warburton et al., Noun and verb retrieval by normal subjects. Studies with PET. Brain : a journal of neurology 119 ( Pt 1), 159-179 (1996).
    37. A. Dhankhar et al., Functional magnetic resonance imaging assessment of the human brain auditory cortex response to increasing word presentation rates. Journal of neurophysiology 77, 476-483 (1997).
    38. C. L. Grady et al., Attention-related modulation of activity in primary and secondary auditory cortex. Neuroreport 8, 2511-2516 (1997).
    39. S. Hirano et al., Cortical activation by monaural speech sound stimulation demonstrated by positron emission tomography. Experimental brain research 113, 75-80 (1997).
    40. L. Jancke, N. J. Shah, S. Posse, M. Grosse-Ryuken, H. W. Muller-Gartner, Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia 36, 875-883 (1998).
    41. N. E. Crone, D. Boatman, B. Gordon, L. Hao, Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 112, 565-582 (2001).
    42. E. Edwards, M. Soltani, L. Y. Deouell, M. S. Berger, R. T. Knight, High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. Journal of neurophysiology 94, 4269-4280 (2005).
    43. E. F. Chang et al., Categorical speech representation in human superior temporal gyrus. Nature neuroscience 13, 1428-1432 (2010).
    44. M. Steinschneider et al., Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cerebral cortex (New York, N.Y. : 1991) 21, 2332-2347 (2011).
    45. B. N. Pasley et al., Reconstructing speech from human auditory cortex. PLoS biology 10, e1001251 (2012).
    46. A. Luczak, P. Bartho, K. D. Harris, Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62, 413-425 (2009).
    47. R. L. Goris, J. A. Movshon, E. P. Simoncelli, Partitioning neuronal variability. Nature neuroscience 17, 858-865 (2014).
    48. J. F. Brugge et al., Functional localization of auditory cortical fields of human: click-train stimulation. Hearing research 238, 12-24 (2008).
    49. K. V. Nourski et al., Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. Journal of neurophysiology 109, 1283-1295 (2013).
    50. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825-841 (2002).
    51. M. A. Howard, 3rd et al., A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain research 724, 260-264 (1996).
    52. C. G. Reddy et al., A method for placing Heschl gyrus depth electrodes. Journal of neurosurgery 112, 1301-1307 (2010).
    53. P. Laguna et al., Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques. IEEE transactions on bio-medical engineering 39, 1032-1044 (1992).
    54. D. Poeppel, W. J. Idsardi, V. van Wassenhove, Speech perception at the interface of neurobiology and linguistics. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 363, 1071-1086 (2008).
    55. G. Hickok, The functional neuroanatomy of language. Physics of life reviews 6, 121-143 (2009).
    56. I. Taylor, M. M. Taylor, Psycholinguistics: Learning and Using Language. (Prentice Hall, 1990).
    57. N. Mesgarani, E. F. Chang, Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485, 233-236 (2012).
    58. D. F. Boatman, D. L. Miglioretti, Cortical sites critical for speech discrimination in normal and impaired listeners. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 5475-5480 (2005).

    無法下載圖示 校內:2018-02-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE