| 研究生: |
王朝正 Wang, Chao-Cheng |
|---|---|
| 論文名稱: |
專用散裝船隊調度問題之研究
-以中鋼原物料運送為例 The Optimal Fleet Deployment of Dedicated Bulk Carriers - A Case Study of CSC. |
| 指導教授: |
陳春益
Cheng, Chuen-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 產業營運 、船舶調度 、中鋼 、散裝船舶 |
| 外文關鍵詞: | industrial operation, ship scheduling, CSC, bulk ship |
| 相關次數: | 點閱:75 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
專用散裝船隊的調度問題相當複雜,其不僅要考量船舶調度的相關因素,更要同時對原料提運計畫訂出決策。通常大型企業會自行構建專用散裝船隊,以供企業本身經營之所需,這種經營船隊方式稱為產業營運,而產業營運就會面臨此種專用散裝船隊調度問題。因此,要如何有效率的調度專用散裝船隊,成為產業營運業者所要面臨的課題。
國內以往對於專用散裝船隊調度問題之相關研究,皆是將專用散裝船隊調度問題拆解,並以多階段的方式加以處理。而本研究嘗試將船舶調度決策以及原料提運決策,一併於單一規劃期內加以處理,並求出最佳決策。而本研究以中鋼專用散裝船隊之調度問題為範例,利用時空網路規劃模式,對此調度問題做出最佳的船舶調度以及原料提運之決策。
在本研究的時空網路規劃模式中,本研究不但考量了專用船舶的營運成本,更將臨時租賃船舶的使用成本以及原料的存置成本納入考量。另外,本研究將時空網路中的原料流層,以船舶隔艙為單位表達原料流層之流量,藉此簡化船流層與原料流層間之限制關係式的單位轉換,大幅增進規劃模式的求解效率。
而經過實證分析,本研究能之船舶調度能對所考量之因素做出反應,並大致符合實務上之運作,值得供產業營運業者參考。
ABSTRACT
Buck cargo fleet scheduling problems are very complicated; they have to decide not only fleet scheduling but also raw material shipping decisions. Usually, big corporations build buck cargo fleet for them self, this kind of fleet operation is called “Industrial Operations”. It is very important for Industrial operations carriers to schedule buck fleets more efficient.
There were not many domestic researches about buck cargo fleet scheduling problems. The fleet scheduling problems were decomposed in former domestic researches. In this research, we try to solve fleet scheduling and raw material shipping problem of China Steel Corporation in one model.
In this research, we use time and space network model to solve buck cargo fleet scheduling problems. In this model, we can deal with not only operations cost of dedicated bulk fleet but also charter cost and inventory cost. Besides, we convert the unit of material flows into ship cabin, therefore we could improve the solving efficiency of model.
參考文獻
1. 丁士展,專用散裝船隊最適調配之研究—以台電進口燃煤船運為例,國立交通大學交通運輸研究所碩士論文,民國八十三年。
2. 中國信託綜合證券研究部,「散裝航運業展望」,http://www.win168.com.tw,民國九十二年。
3. 李鴻濤,多階段原料輸送作業之整體規劃—以中國鋼鐵公司碼頭作業為例,國立成功大學工業管理研究所博士論文,民國八十五年。
4. 林光,海運學,華泰書局,民國八十六年。
5. 林志漢、陸行,「建立油輪排程規劃程序之研究」,運輸計劃季刊,第二十六卷第四期,頁729~764,民國八十六年。
6. 陳志豪,動態貨櫃調度終端效應之研究,國立成功大學交通管理研究所碩士論文,民國八十六年。
7. 陳春益、余秀梅、週伯魁,動態貨櫃調度微觀模式之研究,國科會研究報告,國立成功大學交通管理科學研究所,民國84年。
8. 曾國雄、黃明居、丁士展,「專用散裝船隊最適調配之研究」,運輸計 劃季刊,第二十四卷第四期,頁447~480,民國八十四年。
9. 謝宜樹,「原料備料作業」,技術與訓練,第二十八卷第四期,頁33~40,民國九十二年。
10. 蘇隨昌,鋼鐵原料供應之研究—台灣鋼鐵業範例研究,國立成功大學資源工程研究所碩士論文,民國八十五年。
11. Cho, S. C. and Perakis, A. N., “An Improved Formulation for Bulk Cargo Ship Scheduling with a Single Loading Port,” Maritime Policy and Management, Vol.28, No.4, pp.339-345, 2001.
12. Christiansen, M. and Nygreen, B., “A Method for Solving Ship Routing Problems with Inventory Constraints,” Annals of Operations Research, Vol.81, pp.357-378, 1998.
13. Fagerholt, K., “Ship Scheduling with Soft Time Windows: An Optimization Based Approach,” European Journal of Operational Research, Vol. 131, pp.559-571, 2001.
14. Fourer, R., Gay, D. M. and Kernighan, B. W., AMPL(A Modeling Language For Mathematical Programming), Boyd & Fraser, 1993.
15. Hughes, R. E. and Powell, W. P., “Mitigating End Effect in the Dynamic Vehicle Allocation Model,” Management Science, Vol. 34, pp.859-879, 1988.
16. Lawrence, S. A., International Sea Transport: The years Ahead, Lexington Books, 1972.
17. Miller, D. M., “An Interactive, Computer-aided Ship Scheduling System,” European Journal of Operational Research, Vol.32, pp.363-379, 1987.
18. Perakis, A. N., Bremer, W. M., “An Operational Tanker Scheduling Optimization System: Background, Current Practice and Model Formulation,” Maritime Policy and Management, Vol.19, No.3, pp.177-187, 1992.
19. Rodrigue, J. P., “Maritime Transportation,” http://people.hofstra.edu/geotrans/index.html, 2003.
20. Ronen, D., “Short-term Scheduling of Vessels for Shipping Bluk or Semi-bulk Commodities Originating in a Single Area,” Operations Research, Vol. 34, No.1, pp.164-173, 1986.