簡易檢索 / 詳目顯示

研究生: 吳博銘
Wu, Po-Ming
論文名稱: 區別發炎與單純新生兒缺氧腦傷之早期血中生物指標
Early blood biomarkers distinguish inflammation from neonatal hypoxic-ischemia encephalopathy
指導教授: 杜伊芳
Tu, Yi-Fang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 38
中文關鍵詞: 生物指標缺氧性腦傷低溫療法發炎
外文關鍵詞: biomarker, hypoxic ischemic encephalopathy, hypothermia, inflammation
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    新生兒缺氧性缺血性腦病變為最常見的嬰兒腦病變之原因,而發炎為缺氧性缺血性腦病變可能之惡化因子。低溫治療是目前針對中度到重度新生兒缺氧性缺血性腦病變之標準療法,惟必須於出生內六小時實行。臨床上 目前只能靠臨床症狀來判斷缺氧性缺血性腦病變的嚴重度,缺乏實用的生物指標,利用它來判斷缺氧性缺血性腦病變的嚴重度或是否有像發炎等缺氧性缺血性腦病變可能之惡化因子來決定是否要施行低溫治療。骨橋蛋白(Osteopontin)是個存在於體液內的磷酸蛋白,已知它在缺氧窒息性腦傷後或組織發炎時會增加。而膠質纖維酸性蛋白在缺氧窒息性腦傷後也會被神經膠細胞釋放於血液中。所以我們假設可以利用骨橋蛋白和膠質纖維酸性蛋白來當作腦傷後的生物指標,利用它來判斷缺氧性缺血性腦病變的嚴重度以及分辨發炎加成的缺氧性腦傷。
    方法
    建立不同腦傷程度的缺氧性腦傷動物模式,分別再加成以發炎,並測試低溫對於不同腦傷程度的缺氧性腦傷或發炎加成缺氧性腦傷動物的效果。再進一步測試在血中的生物指標(骨橋蛋白、膠質纖維酸性蛋白)濃度與腦傷程度及預後的相關性。並將動物實驗之結果以缺氧性腦傷新生兒檢體來驗證。
    結果
    不同腦傷程度的動物模式建立後,我們發現腦傷前加成誘發發炎,不論在輕度或重度腦傷程度都會有加重腦傷之趨勢。低溫可以改善輕度或重度缺氧性腦傷,也可以改善誘發發炎的缺氧性腦傷。
    在缺氧後90分鐘後,血中骨橋蛋白在缺氧性腦傷後會降低,而在加成發炎的缺氧性腦傷會顯著增加。另外膠質纖維酸性蛋白,其在缺氧性腦傷後會有微幅的上昇,在加成發炎的缺氧性腦傷會有很明顯的上昇。因此我們可以得知,在動物血中結合此兩個生物指標可區分其是否具有發炎加成之缺氧性腦傷。
    在人體試驗中,預後跟腦傷之嚴重度有相關,在中度到重度腦傷的病人有較高的死亡率和嚴重併發症。而其比起未有腦傷和輕微腦傷不需低溫的族群,血中骨橋蛋白有明顯的上升。
    結論
    在動物模式中,透由結合兩種生物指標可以區分是否有發炎加成的腦傷。而在人類新生兒中,在中到重度腦傷之病患,檢測骨橋蛋白可以發現其升高的現象。所以缺氧性缺血性腦傷後,血中骨橋蛋白可能可以做為低溫治療的指標。

    Background: Neonatal hypoxic–ischemic encephalopathy (HIE) is the most common cause of neurological disability in infancy. Superimposed inflammation may further worsen the outcomes. Clinicians need reliable biomarkers, besides clinical symptoms, to distinguish HIE from inflammation-sensitized HIE within a limited therapeutic window in order to start hypothermia as soon as possible, also, to early identity those patients who may have worse outcome due to additional injury caused by inflammation.
    Methods: We tested plasma osteopontin (OPN) and glial fibrillary astrocytic protein (GFAP) within the reported therapeutic window (90 minutes after hypoxic-ischemic (HI) injury) in neonatal rats with different HI severity and inflammation. Moreover, we prospectively enrolled patients with different HIE severity, and their serum samples within hypothermia therapeutic window (6 hours) were tested.
    Results: Two different HI severity groups (75 minutes hypoxia in mild-HI and 150 minutes hypoxia in severe-HI) were established. Inflammation-sensitized HI brain injury induced by lipopolysaccharide (LPS) further increased apoptotic neurons and infarct volumes. In HI alone groups, OPN significantly decreased (p < 0.001) but GFAP slightly increased (p < 0.05) at 90 minutes after HI either in mild-HI or severe-HI compared with naïve group. In LPS-sensitized HI groups, both OPN and GFAP were significantly increased either in LPS-mild-HI or LPS-severe-HI groups compared with naïve group (all p < 0.001).Despite hypothermia is still protective in inflammation-sensitized HI, inflammation-sensitized HI had poorer long term neurological outcome than those without. Human samples were classified into mild (Sarnat stage 1 HIE) and moderate/severe (Sarnat stage 2/3 HIE) HI. We found osteopontin increased in HI group, compared with normal group, moreover, correlation with severity was observed.
    Conclusions: In this animal model using the blood panel test of OPN and GFAP, it is possible to differentiate HI alone groups from LPS-sensitized HI groups or naïve group. In human, elevated blood OPN may be an indicator of hypothermia therapy.

    中文摘要 I Abstract III Acknowledgement IV Figure Contents VI Table Contents VII Abbreviation Index VIII Introduction 1 Material and methods 4 Discussion 12 Reference 16

    1.Fattuoni C, Palmas F, Noto A, Fanos V, Barberini L. Perinatal asphyxia: a review from a metabolomics perspective. Molecules.2015 Apr;20:7000-7016.
    2.Bhatti A, Kumar P. Systemic effects of perinatal asphyxia. Indian J Pediatr. 2014 Mar;81:231-233.
    3.Shankaran S, Laptook AR, Ehrenkranz RA, et al. Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy N Engl J Med. 2005 Oct 13;353:1574-1584.
    4.Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015 Apr;169:397-403.
    5.Pin TW, Eldridge B, Galea MP. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur J Paediatr Neurol.2009 May;13:224-234.
    6.Herrera-Marschitz M, Neira-Peña T, Rojas-Mancilla E, Morales P, Bustamante D, Leyton L, Gebicke-Haerter P. Short- and long-term consequences of perinatal asphyxia: looking for neuroprotective strategies. Adv Neurobiol. 2015;10:169-198.
    7.Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother. 2017 May;17:449-459.
    8.Thoresen M, Penrice J, Lorek A, et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1995 May;37:667-670.
    9.Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013;(1):CD003311.
    10.Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy:multicenter randomised trial. Lancet. 2005 Feb;365:663670.
    11.Shankaran S, Pappas A, McDonald SA, et al Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012 May ;366:2085-2092.
    12.Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P. The role of inflammation in perinatal brain injury. Nat Rev Neurol.2015 Apr;11:192-208.
    13.Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012 Apr;71:444-457.
    14.Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, Ferriero DM. Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res. 2004 Dec;56:960-966.
    15.Sävman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H. Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res. 1998 Jun;43:746-751
    16.Parker SJ, Kuzniewicz M, Niki H, Wu YW. Antenatal and Intrapartum Risk Factors for Hypoxic-Ischemic Encephalopathy in a US Birth Cohort. J Pediatr. 2018 Dec;203:163-169.
    17.Mir IN, Johnson-Welch SF, Nelson DB, Brown LS, Rosenfeld CR, Chalak LF. Placental pathology is associated with severity of neonatal encephalopathy and adverse developmental outcomes following hypothermia. Am J Obstet Gynecol. 2015;213:849.e1-7
    18.Osredkar D, Thoresen M, Maes E, Flatebø T, Elstad M, Sabir H. Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation. 2014 Apr;85:567-572.
    19.Nagdyman N, Kömen W, Ko HK, Müller C, Obladen M. Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy after Birth Asphyxia. Pediatr Res. 2001 Apr;49:502-506.
    20.Chalak LF, Sánchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr. 2014 Mar;164:468-74.e1.
    21.Ennen CS, Huisman TA, Savage WJ, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol. 2011 Sep;205:251.e1-7.
    22.Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J. Osteopontin—a molecule for all seasons. QJM. 2002 Jan;95:3-13.
    23.Song G, Cai QF, Mao YB, Ming YL, Bao SD, Ouyang GL. Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci. 2008 Oct;99:1901-1907.
    24.Castello LM, Raineri D, Salmi L, Clemente N, Vaschetto R, Quaglia M, Garzaro M, Gentilli S, Navalesi P, Cantaluppi V, Dianzani U, Aspesi A, Chiocchetti A. Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm. 2017;2017:4049098.
    25.Vaschetto R, Nicola S, Olivieri C, Boggio E, Piccolella F, Mesturini R, Damnotti F, Colombo D, Navalesi P, Della Corte F, Dianzani U, Chiocchetti A. Serum levels of osteopontin are increased in SIRS and sepsis. Intensive Care Med. 2008 Dec;34:2176-2184.
    26.Murugaiyan G, Mittal A, Weiner HL. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J Immunol. 2008 Dec; 181:7480-7488.
    27.Ellison JA, Velier JJ, Spera P, Jonak ZL, Wang X, Barone FC,Feuerstein GZ Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke. 1998 Aug;29:1698-1706
    28.Chen W, Ma Q, Suzuki H, Hartman R, Tang J, Zhang JH Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke. 2011 Mar;42:764-769.
    29.Tu YF, Jiang ST, Chow YH, Huang CC, Ho CJ, Chou YP. Insulin Receptor Substrate-1 Activation Mediated p53 Downregulation Protects Against Hypoxic-Ischemia in the Neonatal Brain. Mol Neurobiol. 2016 Aug;53:3658-3669.
    30.Tu YF, Lu PJ, Huang CC, Ho CJ, Chou YP. Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke. 2012 Feb;43:491-498.
    31.McGill JK, Gallagher L, Carswell HV, Irving EA, Dominiczak AF, Macrae IM. Impaired Functional Recovery After Stroke in the Stroke-Prone Spontaneously Hypertensive Rat. Stroke. 2005 Jan;36:135-141.
    32.Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol.1976 Oct;33:696-705.
    33.Bayley N Bayley Scales of Infant and Toddler Development. San Antonio, TX The Psychological Corporation2006
    34.Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy - Where to from Here? Front Neurol. 2015 Sep;6:198.
    35.McRae A, Gilland E, Bona E, Hagberg, H. Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res. 1995 Feb;84:245-252.
    36.Jin Y, Silverman A J, Vannucci SJ. Mast cells are early responders after hypoxia–ischemia in immature rat brain. Stroke. 2009 Sep;40:3107-3112.
    37.Mallard C, Tremblay ME, Vexler ZS. Microglia and Neonatal Brain Injury Neuroscience. Neuroscience. 2019 May ;405:68-76.
    38.Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol. 2015 Apr;57 Suppl 3:17-28.
    39.Shalak LF, Laptook AR, Jafri HS, Ramilo O, Perlman JM. Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics. 2002 Oct;110:673-680.
    40.Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA.2000 Sep ;284:1417-1424.
    41.Falck M, Osredkar D, Maes E, Flatebø T, Wood TR, Walløe L, Sabir H, Thoresen M. Hypothermia Is Neuroprotective after Severe Hypoxic-Ischaemic Brain Injury in Neonatal Rats Pre-Exposed to PAM3CSK4. Dev Neurosci. 2018;40:189-197.
    42.Andrade EB, Alves J, Madureira P, Oliveira L, Ribeiro A, Cordeiro-da-Silva A, Correia-Neves M, Trieu-Cuot P, Ferreira P. TLR2-induced IL-10 production impairs neutrophil recruitment to infected tissues during neonatal bacterial sepsis. J Immunol. 2013 Nov;191:4759-4768.
    43.Ahn SY, Chang YS, Sung DK, Sung SI, Park WS. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy. Sci Rep. 2018 May;8:7665.
    44.Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000 Oct;25:1439-1451.
    45.Mir IN, Chalak LF. Serum biomarkers to evaluate the integrity of the neurovascular unit. Early Hum Dev. 2014 Oct;90:707-711.
    46.Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009 Dec;32:638-647.
    47.Li Y, Dammer EB, Zhang-Brotzge X, Chen S, Duong DM, Seyfried NT, Kuan CY, Sun YY Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy. 2017;4. pii:ENEURO.0253-16.2016.

    下載圖示 校內:2025-01-17公開
    校外:2025-01-17公開
    QR CODE