| 研究生: |
林廷彥 Lin, Ting-Yen |
|---|---|
| 論文名稱: |
使用有限馬可夫鏈方法對於優先佇列的研究與探討 Study of priority queues by finite Markov chain imbedding technique |
| 指導教授: |
張欣民
Chang, Hsing-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 有限馬可夫鏈 、優先佇列 、穩定狀態分布 |
| 外文關鍵詞: | priority queue, steady-state distribution, finite Markov chain imbedding |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,作者研究一個具有多階級、多個服務單位並且有排隊長度限制的優先佇列系統。其中針對不同優先順序的階級,對抵達過程與服務時間給予假設。本研究提供一個簡單且通用的方法,分別在可以插隊與不可以插隊的系統規則下使用有限馬可夫鏈,並在穩定狀態下,找出系統中不同階級服務對象的數量分配情形。接著,再進一步得到穩定狀態下,每種階級在系統中數量的邊際分配。透過數值分析的結果,比較本篇提出的方法在不同模型下的表現並以圖形化方式呈現系統特性。
A multi-class priority queueing system with finite capacity and service count threshold is investigated in this paper. For customers of each priority class, we give different assumptions about the arrival process and service mechanism. Under preemptive-resume and nonpreemptive priority service disciplines, we provide a simple and intuitive way to find the steady-state distributions of the number of customers in the system by the approach of finite Markov chain imbedding. Furthermore, the marginal steady-state distributions can be obtained. Numerical results and illustrations are given to show the characteristics of the system.
1.Erlang, A. K. The theory of Probabilities and Telephone Conversations. Nyt Tidsskrift for Matematik B, vol 20 (1909)
2.Feller, W. An Introduction to Probability Theory and Its Applications, vol. 1, Wiley, New York (1968).
3.Jaiswal, N. K. Priority Queues. Mathematics in science and engineering, vol. 50, Academic Press, New York (1968)
4.Kapadia, A. S., Kazmi, M. F. and Mitchell, A. C. Analysis of a finite capacity nonpreemtive priority queue. Computers and Operations Research, 11, 337-343 (1984)
5.Kendall, D. G. Some problems in the theory of queues. Journal of the Royal Statistical Society Series B, 13, 151-185 (1951)
6.Kendall, D. G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. The Annals of Mathematical Statistics, 24, 338-354 (1953)
7.Kleinrock, L. Queueing Systems, Volume II: Computer Applications Wiley-Interscience, New York (1976)
8.Stordahl, K. The History Behind the Probability Theory and the Queueing Theory. Telenor ASA (2007)
9.Wagner, D. Waiting times of a finite-capacity multi-server model with nonpreemptive priorities. European Journal of Operational Research, 102, 227-241 (1997)
校內:2022-07-31公開