簡易檢索 / 詳目顯示

研究生: 林益村
Lin, Yi-Cun
論文名稱: 靜磁場與不同濃度對錫鉛合金之方向性凝固結構之影響分析
Analysis of the Effects of Static Magnetic Field and Different Concentrations on the Directional Solidification Structure of Tin-Lead Alloy
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 165
中文關鍵詞: 方向性凝固錫鉛合金磁場金相組織
外文關鍵詞: directional solidification, tin-lead alloy, magnetic field, metallographic structure
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝固是指在溫度降低時,物質由液態轉變成固態之過程。而在凝固過程中,會因為不同之濃度、溫度與冷卻條件等控制參數,會形成不同的巨觀及微觀結構以及決定各項之物理性質與化學性質,並可以運用在各種領域當中。
    方向性凝固,又稱為定向凝固,使金屬材料利用人為控制融熔金屬的結晶成長方向,得到結晶方向相近的柱狀晶,並更進一步獲得單晶結構的凝固方法。電磁凝固是以電場或磁場搭配控制參數來控制凝固過程,此技術較為複雜的研究領域。
    本研究是以方向性凝固製備錫鉛合金,使用不同濃度之錫鉛合金(Sn-10wt.%Pb)、(Sn-37wt.%Pb)以及(Sn-60wt.%Pb)作為研究材料,施加強力磁鐵所產生的磁場效應研究凝固過程。透過不同的控制參數實驗出六種不同之實驗組別,分析巨觀及微觀金相組織、冷卻曲線、溫度梯度、成長速率、晶粒尺寸及硬度值等。
    實驗結果分析可知,含鉛量越高,其硬度值越小。以有無施加磁鐵之部分加以說明,觀察橫切面之金相組織,可以發現有施加磁鐵之組別,其硬度值會比無施加磁鐵之組別還大,原因是有施加磁鐵之組別受到強力磁鐵之影響,使內部晶粒尺寸細化,而整體之硬度值上升之現象。探討密度值之大小,純鉛之密度高於純錫之密度,因此在分析不同濃度之錫鉛合金時,含鉛濃度越高之錫鉛合金,其密度較高,熔點與沸點也會上升。

    This study prepared tin-lead alloy for directional solidification, using tin-lead alloy (Sn-10wt.%Pb)、(Sn-37wt.%Pb) and (Sn-60wt.%Pb) of different concentrations as the research materials, with used the magnetic field effect by the application of a strong magnet to study the solidification process. Through six different experimental cases with different control parameters, the study is to analysis the macro metallographic structure and micro metallographic structure, cooling curve, temperature gradient, growth rate, grain size and hardness value etc.

    The analysis of experimental results shows that the hardness value is smaller when the lead concentration is higher. Explain whether the magnet is applied or not. Observing the metallographic structure of the cross-sectional, it can be found that the hardness value of the case with themadnet applied is higher than the case without magnet. The reason is that the case with magnet applied receives strong magnetic field. The influence of the magnet makes the internal grain size refinement and the overall hardness value increases.

    Discuss the density value. The density of pure lead higher than pure tin. Therefore, when analyzing the different concentrations of tin-lead alloy, the density and the melting point and boiling point is higher when the lead concentration is higher.

    摘要 I ABSTRACT III 誌謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XX 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 5 1-2-1方向性凝固 5 1-2-2電磁凝固 7 第二章 凝固理論模式 15 2-1凝固過程 16 2-1-1成核階段(Nucleation) 17 2-1-2晶粒成長與侵犯階段(Growth and Impingement) 20 2-1-3晶粒成長型態 21 2-2方向性凝固模式 24 2-3電磁凝固理論 25 2-3-1磁場的抑制對流作用 26 2-3-2熱電磁流體動力學效應 26 第三章 實驗設備與方法 36 3-1實驗設備 36 3-1-1鑄件外模 36 3-1-2方向性凝固載台 37 3-1-3熔解爐 37 3-1-4冷激銅盒 37 3-1-5恆溫循環水槽 38 3-1-6溫度擷取裝置 38 3-1-7熱電偶 38 3-1-8永久磁鐵 39 3-1-9點焊機 39 3-1-10研磨拋光機 39 3-1-11研磨水砂紙 40 3-1-12拋光絨布 40 3-1-13拋光液 40 3-1-14光學顯微鏡 41 3-2實驗模式 41 3-2-1方向性凝固之實驗模式 41 3-3鑄件之材料分析 44 3-3-1金相處理之實驗設備 44 3-3-2巨觀金相組織觀察 46 3-3-3微觀金相組織觀察 50 3-3-4光學顯微鏡之金相觀察 50 3-3-5材料之機械性質 51 3-3-6實驗數據整理與計算 53 第四章 結果與討論 76 4-1方向性凝固實驗與結果 76 4-1-1暫態溫度量測 77 4-1-1-1冷卻曲線之分析 77 4-1-1-2成長速率 78 4-1-1-3溫度梯度 79 4-1-1-4 G/V值與G∙V值 80 4-2巨觀金相組織 81 4-3微觀金相組織 84 4-3-1縱切面金相組織 84 4-3-2橫截面之金相組織 87 4-4材料機械性質 90 第五章 結論 161 5-1結論 161 參考文獻 163

    [1]D. Askeland,P. Fulay, and W. Wright, The science and engineering of materials:
    Cengage Learning, 2011.
    [2]李魁盛, "鑄造工藝設計基礎",機械工業出版社,1981
    [3]陸文華,鑄鐵極其熔鋁,機械工業出版社,1981
    [4]W. F. Smith and J. Hashemi, Foundations of materials science and engineering: Mcgraw Publishing, 2006.
    [5]W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and
    engineering: an integrated approach: John Wiley & Sons, 2012.
    [6]R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles: SI Edition:
    Cengage Learning, 2010.
    [7]E. Hall,"The deformation and ageing of mild steel: Ⅲ discussion of results,"Proceedings of the Phtsical Society. Section B, vol. 64, p. 747,1951.
    [8]N. J. Petch,"The Cleavage Strength of Polycrystals," J. Iron Steel Inst. London, pp.25-28, 1953.
    [9]M. Rettenmayer and H. E. Exner, Directional Solidification Materials Science and Technology, 2001.
    [10]F. N. Rhines, Phase diagrams in metallurgy: their development and application: McGraw-Hill Companies, 1956.
    [11]吳俐潔,"以方向性凝固至被錫鉛合金之不同參數對其凝固結構之影響分析," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2013.
    [12]趙國傑,"凝固參數對於方向性成長之結構參數影響分析,"成功大學工程科學系碩博士班學位論文,pp.1-179, 2007.
    [13]趙上億,"錫鉛合金方向性凝固製程之研究," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2013.
    [14]張簡振甫,"磁場與濃度對於錫鉛合金方向性凝固的影響," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2016.
    [15]張嘉麟,"冷卻介質及磁場對於方向性凝固錫鉛合金製備之影響," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2017.
    [16]郭祐祥,"靜磁場對方向性凝固錫鉛合金結構之影響分析," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2017.
    [17]F. VerSnyder and R. Guard,"Directional grain structure for high temperature strength,"Trans.ASM, vol. 52, p.485, 1960.
    [18]F.VerSnyder, R. Hehemann, and G. M. Ault,"High Temperature Materials,"ed: Wiley-Interscience, New York, 1959.
    [19]H. Fisher and J. Walter,"Control of Crystal Orientation in Silicon-Iron Ingots," TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME,vol. 224, pp. 1271-&, 1962.
    [20]J. L. Walter, "Method for casting and working grain oriented ingots,"ed: Google Patents, 1960.
    [21]D. G. McCartney and a. J. D. Hunt,"Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solified Aluminum Alloys,"Acta Metallurgica, vol. 29, pp. 1851-1863, 1981.
    [22]C. M. Klaren, J. D. Verhoeven and R.Trivedi,"Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au alloys,"Metallurgical Transcatons 11A, vol. 11, pp. 1853-1861, 1980.
    [23]O. L. Rocha, C. A. Siqueira, and A. Garcia,"Cellular spacings in unsteady-state directionally solidified Sn-Pb alloys,"Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
    [24]C. A. Siqueira, N. Cheung, and A. Garcia,"The columnar to equiaxed transition during solidification of Sn-Pb alloys,"Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
    [25]E. Cadirli and Gündüz, "The directional solidification of Pb-Sn alloys," Journal of materials science, vol. 35, pp. 3837-3848, 2000.
    [26]馬娟萍,"強磁場對定向凝固Pb-Sn共晶生長影響的初步研究,"自然科學進展,vol.14(7) , pp.837, 2004
    [27]Y. Kishida, K. Takeda, I. Miyoshino, and E. Takeuchi,"Anisotropic effect of magnetohydrodynamics on metal solification,"1990.
    [28]李喜與任忠鳴,"靜磁場下熱電磁效應及其對凝固組織的影響,"中國材料進展,vol.33(6), 2014
    [29]T. B. Massalski, H. Okatoto, P. Subramanian, and L. Kacprzak, Binary alloy phase diagram: ASM international, 1990.
    [30]P. Jain, Principles of foundry technology: Tata McGraw-Hill Education, 2003.
    [31]林樹均, 葉均蔚, 劉增豐, and 李聖隆, "材料工程實驗及原理," 初版, 全華科技圖書有限公司, pp. 111-122, 1990.
    [32]B. Cantor and K. O'Reilly, Solidification and Casting: Taylor & Francis, 2002.
    [33]林盈佐, "凝固顯微組織與模式分析," 國立成功大學工程科學所碩士論文, 1998.
    [34]E. P. DeGarmo, J. T. Black, and R. A. Kohser, Materials and Processes in Manufacturing: Wiley, 2002.
    [35]D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint): Taylor & Francis, 2009.
    [36]A. S. f. Metals, Liquid metals and solidification: a seminar on liquid metals and solidification held during the thirty-ninth National Metal Congress and Exposition, Chicago, November 2 to 8, 1957: American Society for Metals, 1958.
    [37]W. Losert, B. Shi, and H. Cummins, "Evolution of dendritic patterns during alloy solidification: Onset of the initial instability," Proceedings of the National Academy of Sciences, vol. 95, pp. 431-438, 1998.
    [38]W. Kurz and D. J. Fisher,"Fundamentals of solidification,"Trans Tech Publications Ltd, Trans Tech House, 4711, Aedermannsdorf, Switzerland, 1986. 244, 1986.
    [39]屈淑維, "穩恒磁場及直流電場對鋁硅合金凝固過程及組織性能的影響研究," 碩士, 中北大学, 2009.
    [40]王嚴,"樹枝晶前沿熱電磁流體動力學效應的研究," 碩士, 遼寧工程技術大學, 2009.
    [41]I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins,"Thermoelectric current and magnetic field interaction influence on the structure of directionally solidified Sn-10wt.%Pb alloy,"Journal of Alloys and Compounds, vol. 571, pp. 50-55, 2013.
    [42]R. Moreau, O. Laskar, M. Tanaka, and D. Camel, "Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime," Materials Science and Engineering: A, vol. 173, pp. 93-100, 12/20/ 1993.
    [43]徐逸民與張偉強,"外磁場對定向凝固枝晶組織形貌的影響," 碩士, 遼寧工程技術大學, 2008.
    [44]李茂與任忠鳴,"縱向磁場對Al-0.85%Cu合金定向凝固介面穩定性和形態的影響,"中國有色金屬學報, vol.21(6), 2004
    [45]馬德斯,"高溫合金葉片單晶凝固技術的新發展,"金屬學報, vol.51(10), pp.1179-1190, 2015

    無法下載圖示 校內:2025-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE