簡易檢索 / 詳目顯示

研究生: 林明緯
Lin, Ming-Wei
論文名稱: 探討不同陰陽離子結構五圓環質子型離子液體的傳輸性質和溶劑性質
The effect of the structure of anion and cation on the transport and solvent property of protic ionic liquids based on five-membered ring
指導教授: 蘇世剛
Su, Shih-Gang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 153
中文關鍵詞: 質子型離子液體擴散係數密度黏度導電度酸度極性
外文關鍵詞: protic ionic liquids, diffusion coefficient, density, viscosity, conductivity, acidity, polarity
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用酸鹼中和合成13種質子型離子液體,其中陽離子以五圓環為基礎,分別加入拉電子基羰基 (carbonyl group)作為取代基以及使用imidazole作為替代的陽離子,陰離子則使用各種的酸 (formic acid、sulfuric acid、trifluoroacetic acid、fluoroboric acid、methanesulfonic acid)當作陰離子變化的來源,除此之外我們也合成不同酸鹼比例的質子型離子液體。
    我們測量質子型離子液體的酸度和極性以及在不同溫度下密度、黏度、導電度的大小,並探討陰陽離子結構變化對這些物理性質的影響。同時也使用核磁共振技術,測量陰陽離子的擴散係數,經計算出其陰離子與陽離子的比擴散係數,可以得知陰陽離子之間有強烈的相關聯性。除此之外,還可藉此計算出陰陽離子的解離程度,從NMR實驗中我們可以知道每個質子型離子液體都會產生聚集,因聚集而產生的離子團簇數量都不相同,因此影響了其物理性質的表現。
    結果顯示,每個質子型離子液體的陰離子與陽離子的擴散係數會隨著溫度升高而上升,而且質子型離子液體的陰離子擴散係數都會大於陽離子的擴散係數,除了[MePyrone][CH3SO3]以外。
    不同陰離子的質子型離子液體的密度隨起始物酸的密度變大而增大,其黏度隨起始物酸與鹼的pKa差值 (△pKa)越大而上升,導電度、擴散係數、解離程度下降。隨著起始物酸的酸性上升,其質子型離子液體的酸性與極性就越大
    不同陽離子的質子型離子液體的密度、黏度隨著氫鍵與偶極偶極作用力增加而變大,導電度、擴散係數、解離程度下降。而其酸性隨著解離程度下降而上升。
    不同酸鹼比例的質子型離子液體,隨著起始物酸的比例上升,其黏度、酸性下降,而密度、導電度、擴散係數、解離程度、極性上升。

    We synthesized thirteen protic ionic liquids (PILs) through acid-base neutralization reaction. Based on five-membered-ring and pyrrolidine, the cation of these PILs were altered by introducing an electron-withdrawing group as a substituent, and replaced with imidazole. The anion of these PILs were alternative of following five acids, formic acid, sulfuric acid, trifluoroacetic acid, fluoroboric acid and methanesulfonic acid. In addition to use base:acid ratios (1:1) to synthesize protic ionic liquids, we also applied different base:acid ratios (1:2 and 1:4).
    We measured the physical properties, like density, viscosity, and conductivity of these PILs under variable temperature, and also measured their acidity and polarity under room temperature to help us understand the influence upon these physical properties when changing cation and anion in PILs. Moreover, we applied nuclear magnetic resonance technique to measure the particular diffusion coefficient of cation and anion in PILs. In this way, we calculated the dissociation of PILs from diffusion coefficient of cation and anion. As a result, we can know that the cation and anion of all PILs would aggregate, and it would produce cluster which has bulky volume. Due to the cluster that was produced, it would bring about benefit or damage to these five physical properties.
    The results show that every diffusion coefficient of cation and anion for all PILs increases when the temperature raises. All of diffusion coefficient of anion for these PILs is greater than their diffusion coefficient of cation, except [MePyrone][CH3SO3].
    The density of PILs with different anions increases when the density of reactant acid increases. Besides, with the increasing in viscosity of the PILs with different anions and decreasing in conductivity, dissociation and diffusion coefficient, the variation of pKa between acid and base of reactant increases. The greater the acid of the reactant is, the greater the acid and polarity of PILs.
    According to hydrogen bond and dipole-dipole interaction increase, the viscosity and density of PILs which are based on different cations increases, but conductivity, dissociation and diffusion coefficient decrease. In addition, when the dissociation of PILs with different cations decreases, then the acidic of them would increase.
    When reactant acid ratio begins increasing, density, conductivity, dissociation and diffusion coefficient of different base:acid ratios (1:2 and 1:4) PILs increase, but the viscosity and acidic would decrease.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XII 圖目錄 XIV 第一章 序論 1 1-1 前言 1 1-2 離子液體的定義 4 1-3 離子液體的種類 4 1-4 離子液體的發展 5 1-5 離子液體的物理化學性質 7 (A) 密度 (Density) 7 (B) 黏度 (Viscosity) 7 (C) 導電度 (Conductivity) 8 (D) 酸度 (Acidity) 9 (E) 極性 (Polarity) 9 1-6 離子液體的應用 11 1-7 研究動機 14 第二章 理論背景 15 2-1 核磁共振原理 15 2-2 遮蔽效應與化學位移 17 2-3 核磁共振的弛緩機制 20 2-4 擴散係數 23 2-5 酸度 24 2-6 極性 25 第三章 實驗方法 28 3-1 質子型離子液體種類 28 3-2 質子型離子液體的合成 29 3-3 實驗裝置及儀器 30 3-4 實驗方法 30 (A) 擴散係數的測量 30 (B) 密度、黏度、導電度的測量 33 B1. 密度 33 B2. 黏度 33 B3. 導電度 35 (C) 酸度、極性的測量 36 C1. 酸度(一) 36 C2. 酸度(二) 37 C3. 極性 37 第四章 結果與討論 38 4-1 擴散係數 38 (A) 質子型離子液體的陰離子與陽離子的擴散係數與溫度的關係 38 (B) 不同陰離子的質子型離子液體 41 (C) 不同陽離子的質子型離子液體 45 (D) 不同酸鹼比例的質子型離子液體 49 (E) 質子型離子液體的擴散係數與起始物酸與鹼的△pKa值關係 50 4-2 密度 62 (A) 質子型離子液體的密度與溫度的影響 62 (B) 不同陰離子的質子型離子液體 62 (C) 不同陽離子的質子型離子液體 63 (D) 不同酸鹼比例的質子型離子液體 68 (E) 質子型離子液體的密度與起始物酸與鹼的△pKa值關係 69 4-3 黏度 76 (A) 質子型離子液體的黏度與溫度的影響 76 (B) 不同陰離子的質子型離子液體 78 (C) 不同陽離子的質子型離子液體 80 (D) 不同酸鹼比例的質子型離子液體 83 (E) Stokes-Einstein equation 84 (F) 質子型離子液體的黏度與起始物酸與鹼的△pKa值關係 85 4-4 導電度 95 (A) 不同溫度下的質子型離子液體的導電度 95 (B) 不同陰離子的質子型離子液體 97 (C) 不同陽離子的質子型離子液體 102 (D) 不同酸鹼比例的質子型離子液體 103 (E) 質子型離子液體的導電度與起始物酸與鹼的△pKa值關係 104 4-5 Walden plot 111 (A) 不同陰離子的質子型離子液體 112 (B) 不同陽離子的質子型離子液體 113 (C) 不同酸鹼比例的質子型離子液體 113 4-6 酸度 115 (A) 不同陰離子的質子型離子液體 116 (B) 不同陽離子的質子型離子液體 118 (C) 不同酸鹼比例的質子型離子液體 120 (D) 質子型離子液體的酸度與起始物酸與鹼的△pKa值關係 120 4-7 極性 133 (A) 不同陰離子的質子型離子液體 134 (B) 不同陽離子的質子型離子液體 135 (C) 不同酸鹼比例的質子型離子液體 137 (D) 質子型離子液體的極性與起始物酸與鹼的△pKa值關係 137 第五章 結論 145 參考文獻 150

    1. Anastas, P. T.; Warne, J. C. Green chemistry: theory and practice; Oxford University, Press: New York, 1998.
    2. Wasserscheid, P.; Welton, T. Ionic liquids in synthesis; Wiley-VCH: Weinheim, 2008.
    3. Baker, G. A.; Baker, S. N.; Pandey, S.; Bright, F. V. Analyst 2005, 130, 800.
    4. Sugden, S.; Wilkins, H. J. Chem. Soc. 1929, 1291.
    5. Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryoung, R. A. J. Am. Chem. Soc. 1975, 97, 3264.
    6. Anouti, M.; Caillon-Caravanier, M.; Le Floch, C.; Lemordant, D. J. Phys. Chem. B 2008, 112, 9412.
    7. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965.
    8. Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168.
    9. Tokuda, H.; Tsuzuki, S.; Susan, M.; Hayamizu, K.; Watanabe, M. J. Phys. Chem. B 2006, 110, 19593.
    10. Yoshida, Y.; Kondo, M.; Saito, G. J. Phys. Chem. B 2009, 113, 8960.
    11. Greaves, T. L.; Weerawardena, A.; Fong, C.; Krodkiewska, I.; Drummond, C. J. J. Phys. Chem. B 2006, 110, 22479.
    12. Anouti, M.; Caillon-Caravanier, M.; Dridi, Y.; Galiano, H.; Lemordant, D. J. Phys. Chem. B 2008, 112, 13335.
    13. Zhao, C.; Burrell, G.; Torriero, A. A. J.; Separovic, F.; Dunlop, N. F.; MacFarlane, D. R.; Bond, A. M. J. Phys. Chem. B 2008, 112, 6923.
    14. Fang, D.; Shi, Q. R.; Cheng, J.; Gong, K.; Liu, Z. L. Appl. Catal., A 2008, 345, 158.
    15. Wang, Y. Y.; Li, W.; Dai, L. Y. Chin. J. Chem . 2008, 26, 1390.
    16. Du, Y. Y.; Tian, F. L. J. Chem. Res. 2006, 486.
    17. Dzyuba, S. V.; Bartsch, R. A. Tetrahedron Lett. 2002, 43, 4657.
    18. Ogihara, W.; Aoyama, T.; Ohno, H. Chem. Lett. 2004, 33, 1414.
    19. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. G. J. Am. Chem. Soc. 2005, 127, 16835.
    20. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Gratzel, M. J. Phys. Chem. B 2003, 107, 13280.
    21. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 374.
    22. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Gratzel, M. J. Am. Chem. Soc. 2003, 125, 1166.
    23. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Gratzel, M. Chem. Mater. 2004, 16, 2694.
    24. Kuang, D. B.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 7732.
    25. Wang, P.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Cevey-Ha, N. L.; Charvet, R.; Comte, P.; Zakeeruddin, S. M.; Gratzel, M. J. Phys. Chem. B 2004, 108, 17553.
    26. Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M.; Tanabe, N.; Watanabe, M. J. Photochem. Photobiol. A 2004, 164, 87.
    27. Paulsson, H.; Hagfeldt, A.; Kloo, L. J. Phys. Chem. B 2003, 107, 13665.
    28. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry-Baker, R.; Gratzel, M. J. Am. Chem. Soc. 2004, 126, 7164.
    29. Singh, P. K.; Kim, K. W.; Rhee, H. W. Synth. Met. 2009, 159, 1538.
    30. Xing, H. B.; Wang, T.; Zhou, Z. H.; Dai, Y. Y. Synth. Commun. 2006, 36, 2433.
    31. Ganeshpure, P. A.; George, G.; Das, J. J. Mol. Catal. A: Chem. 2008, 279, 182.
    32. Duan, Z. Y.; Gu, Y. L.; Zhang, J.; Zhu, L. Y.; Deng, Y. Q. J. Mol. Catal. A: Chem. 2006, 250, 163.
    33. Zhao, G. Y.; Jiang, T.; Gao, H. X.; Han, B. X.; Huang, J.; Sun, D. H. Green Chem. 2004, 6, 75.
    34. Du, Y. Y.; Tian, F. L.; Zhao, W. Z. Synth. Commun. 2006, 36, 1661.
    35. Anderson, J. L.; Armstrong, D. W. Anal. Chem. 2003, 75, 4851.
    36. Wei, G. T.; Yang, Z. S.; Lee, C. Y.; Yang, H. Y.; Wang, C. R. C. J. Am. Chem. Soc. 2004, 126, 5036.
    37. Tyrrell, H. J. V.; Harris, K. R. Diffusion in Liquids; Butterworths: London 1984.
    38. Cussler, E. L. Diffusion, mass transfer in fluid systems; Cambridge University Cambridge, Press,1984.New York.
    39. Stejskal, E. O.; Tanner, J. E. J. Chem. Phys. 1965, 42, 288.
    40. Thornazeau, C.; Olivier-Bourbigou, H.; Magna, L.; Luts, S.; Gilbert, B. J. Am. Chem. Soc. 2003, 125, 5264.
    41. Berthelot, M.; Saint-Gilles, P. Ann. Chim. Phys. 1862, 65, 385.
    42. Reichardt, C. Chem. Soc. Rev. 1992, 21, 147.
    43. Reichardt, C. Green Chem. 2005, 7, 339.
    44. Kessler, M. A.; Wolfbeis, O. S. Chem. Phys. Lipids 1989, 50, 51.
    45. Baker, S. N.; Baker, G. A.; Bright, F. V. Green Chem. 2002, 4, 165.
    46. Carmichael, A. J.; Seddon, K. R. J. Phys. Org. Chem. 2000, 13, 591.
    47. Bazito, F. F. C.; Kawano, Y.; Torresi, R. M. Electrochim. Acta 2007, 52, 6427.
    48. Johansson, K. M.; Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R.; Seddon, K. R. PCCP 2008, 10, 2972.
    49. Mayrand-Provencher, L.; Rochefort, D. J. Phys. Chem. C 2009, 113, 1632.
    50. Tokuda, H.; Hayamizu, K. ; Ishii, K. ; Susan, M. ; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103.
    51. Xu, W.; Cooper, E. I.; Angell, C. A. J. Phys. Chem. B 2003, 107, 6170.
    52. Angell, C. A.; Byrne, N.; Belieres, J. P. Acc. Chem. Res. 2007, 40, 1228.

    下載圖示 校內:2013-08-09公開
    校外:2013-08-09公開
    QR CODE