簡易檢索 / 詳目顯示

研究生: 歐俐君
Ou, Li-Jyun
論文名稱: RIN 在人類母細胞瘤扮演的角色
The Role of RIN in Human Neuroblastoma
指導教授: 張玲
Chang, Christina Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 37
中文關鍵詞: 神經母細胞瘤RIN神經分化SH-SY5YIMR32NB69
外文關鍵詞: neuroblastoma, RIN, neuronal differentiation, SH-SY5Y, IMR32, NB69
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經母細胞瘤是美國最常見的兒童顱外癌症。目前普遍認為神經母細胞瘤的發生原因,是交感神經系統在發育過程中,神經分化異常或細胞凋亡失常。RIN是三磷酸鳥糞嘌呤水解酶的一種,歸類於Ras家族並僅只表現於神經系統中。在老鼠細胞株中的研究發現RIN參與神經分化及細胞轉型,但目前RIN在人類神經母細胞瘤中的角色尚未了解。透過反轉錄聚合酶連鎖反應 (RT-PCR)及定量反轉錄聚合酶連鎖反應(qRT-PCR),我發現RIN mRNA表現在SH-SY5Y及IMR32神經母細胞瘤細胞株中但並不表現在NB69神經母細胞株,在Gene Expression Omnibus (GEO)資料庫中也發現相對於SH-SY5Y,另有兩株人類神經母細胞瘤細胞株的RIN mRNA表現量很低。另外,利用聚合酶連鎖反應,在NB69細胞株中並無法偵測到RIN的基因,而在SH-SY5Y及IMR32細胞株中卻仍可偵測到RIN的基因,與反轉錄聚合酶連鎖反應的結果是一致的。令人驚訝的是,透過西方墨漬法,在測試的三株神經母細胞瘤皆無法測到RIN蛋白質的表現。基因轉殖細胞穩定表現wild type RIN (wtRIN), constitutively active RIN (caRIN)及dominant negative RIN (dnRIN)被建立並用以進行實驗。實驗結果指出RIN可能參與神經分化、細胞移動、生存、及p38磷酸化。更進一步的實驗需要進行以了解RIN在神經母細胞瘤的發展所扮演的角色。

    Neuroblastoma is the most common extracranial tumor in childhood in America. Neuroblastoma is believed to be developed due to neuronal differentiation failure and improper apoptosis that occur during the development of the sympathetic nervous system. RIN, a small GTPase, is known to participate in neuronal differentiation at least in murine cell lines. RIN belongs to the Ras superfamily and is expressed exclusively in neurons. Currently, the role of RIN in human neuroblastoma is unclear. By RT-PCR and real-time RT-PCR, RIN mRNA was detectable in SH-SY5Y and IMR32, not in NB69 human neuroblastoma cell lines. Based on the Gene Expression Omnibus (GEO) database at NCBI, the level of RIN mRNA was also greatly reduced in two other human neuroblastoma cell lines relative to SH-SY5Y. After examination of the RIN gene by PCR, three exons were detected in SH-SY5Y and IMR32 cell lines and seven neuroblastoma patients, but not in NB69 cells. Surprisingly, none of the three test neuroblastoma cell lines displayed detectable RIN protein based on Western blot analysis. Stable transfectants expressed ectopic wild type RIN (wtRIN), constitutively active RIN (caRIN), and dominant negative RIN (dnRIN) were established. Studies performed in these stable transfectants revealed that RIN seems to participate in neuron-like differentiation, cell migration, cell survival and NGF-independent p38 phosphorylation. Further studies are needed to understand the role of RIN in neuroblastoma development.

    中文摘要Abstract in Chinese i 英文摘要Abstract in English ii 表目錄Contents of Lists vi 圖目錄Contents of Figures vii 簡介 Introduction 1 I. Development, oncogenic events, and treatments of neuroblastoma 1 II. Neuroblastoma cell types 2 III. RAS superfamily 3 IV. RIT and RIN 4 V. Characterization of RIN 5 VI. Functions and pathways of RIN 6 VII. Hypothesis 6 材料與方法 Materials and methods 7 Antibodies and reagents 7 Plasmids construction 7 Cell culture and transfection 8 Differentiation and p38 phosphorylation induction 8 Reverse-transcription polymerase chain reaction 9 Real-time polymerase chain reaction 9 Genomic DNA PCR 9 Western blot 10 Flow cytometry 10 3-[4, 5-Dimethylthiazol-yl]–2, 5–diphenyltetrazolium bromide (MTT) assay 10 Wound healing assay 11 結果 Results 12 I. RIN expression is altered in human neuroblastoma cell lines 12 II. Defects of RIN gene in NB69 cell line 13 III. Effects of ectopic RIN expression on cell morphology of NB69 cells 13 IV. Effects of ectopic RIN variants on tumorigenesis properties 14 V. Effects of RIN expression on NGF-induced p38 activation 15 討論 Discussion 17 參考文獻 References 19 表 Tables 23 圖 Figures 25 附錄 Appendix 37

    1. 廬孟佑. 神經母細胞瘤治療新趨勢. 台大醫網 2007: 12-4.
    2. Nakagawara A, Ohira M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 2004; 204: 213-24.
    3. LaBonne C, Bronner-Fraser M. Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 1999; 15: 81-112.
    4. Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996; 122: 2079-88.
    5. Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 1999; 24: 861-70.
    6. White PM, Morrison SJ, Orimoto K, Kubu CJ, Verdi JM, Anderson DJ. Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 2001; 29: 57-71.
    7. Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85: 331-43.
    8. Huber K. The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 2006; 298: 335-43.
    9. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature Reviews Cancer 2003; 3: 203-16.
    10. Bown N. Neuroblastoma tumour genetics: clinical and biological aspects. J Clin Pathol 2001; 54: 897-910.
    11. Alaminos M, Mora J, Cheung NK, et al. Genome-wide analysis of gene expression associated with MYCN in human neuroblastoma. Cancer Res 2003; 63: 4538-46.
    12. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14: 759-67.
    13. Brodeur GM, Nakagawara A, Yamashiro DJ, et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 1997; 31: 49-55.
    14. need ref
    15. Takita J, Hayashi Y, Takei K, et al. Allelic imbalance on chromosome 18 in neuroblastoma. Eur J Cancer 2000; 36: 508-13.
    16. Takita J, Hayashi Y, Kohno T, et al. Allelotype of neuroblastoma. Oncogene 1995; 11: 1829-34.
    17. Cunsolo CL, Bicocchi MP, Petti AR, Tonini GP. Numerical and structural aberrations in advanced neuroblastoma tumours by CGH analysis; survival correlates with chromosome 17 status. Br J Cancer 2000; 83: 1295-300.
    18. Wagner LM, Danks MK. New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem 2009; 107: 46-57.
    19. Park JR, Villablanca JG, London WB, et al. Outcome of high-risk stage 3 neuroblastoma with myeloablative therapy and 13-cis-retinoic acid: a report from the Children's Oncology Group. Pediatr Blood Cancer 2009; 52: 44-50.
    20. Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol 2009; 27: 1007-13.
    21. Sidell N, Altman A, Haussler MR, Seeger RC. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp Cell Res 1983; 148: 21-30.
    22. DeClerck YA, Bomann ET, Spengler BA, Biedler JL. Differential collagen biosynthesis by human neuroblastoma cell variants. Cancer Res 1987; 47: 6505-10.
    23. Kim B, van Golen CM, Feldman EL. Insulin-like growth factor-I signaling in human neuroblastoma cells. Oncogene 2004; 23: 130-41.
    24. Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 1989; 49: 219-25.
    25. Thiele CJ. Neuroblastoma cell lines. In: Masters JRW, editor. Human Cell Culture. Lancaster, UK: Kluwer Academic Publishers; 1998. p. 21-53.
    26. Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 1978; 38: 3751-7.
    27. Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 1973; 33: 2643-52.
    28. Tumilowicz JJ, Nichols WW, Cholon JJ, Greene AE. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res 1970; 30: 2110-8.
    29. Feder MK, Gilbert F. Clonal evolution in a human neuroblastoma. J Natl Cancer Inst 1983; 70: 1051-6.
    30. Charest PG, Firtel RA. Big roles for small GTPases in the control of directed cell movement. Biochem J 2007; 401: 377-90.
    31. Shao H, Kadono-Okuda K, Finlin BS, Andres DA. Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch Biochem Biophys 1999; 371: 207-19.
    32. Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE 2004; 2004: RE13.
    33. Wes PD, Yu M, Montell C. RIC, a calmodulin-binding Ras-like GTPase. EMBO J 1996; 15: 5839-48.
    34. Lee CH, Della NG, Chew CE, Zack DJ. Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J Neurosci 1996; 16: 6784-94.
    35. Calissano M, Latchman DS. Functional interaction between the small GTP-binding protein Rin and the N-terminal of Brn-3a transcription factor. Oncogene 2003; 22: 5408-14.
    36. Rusyn EV, Reynolds ER, Shao H, et al. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways. Oncogene 2000; 19: 4685-94.
    37. Sakabe K, Teramoto H, Zohar M, et al. Potent transforming activity of the small GTP-binding protein Rit in NIH 3T3 cells: evidence for a role of a p38gamma-dependent signaling pathway. FEBS Lett 2002; 511: 15-20.
    38. Spencer ML, Shao H, Andres DA. Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase. J Biol Chem 2002; 277: 20160-8.
    39. Shi GX, Andres DA. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Mol Cell Biol 2005; 25: 830-46.
    40. Rudolph JL, Shi GX, Erdogan E, Fields AP, Andres DA. Rit mutants confirm role of MEK/ERK signaling in neuronal differentiation and reveal novel Par6 interaction. Biochim Biophys Acta 2007; 1773: 1793-800.
    41. Hynds DL, Spencer ML, Andres DA, Snow DM. Rit promotes MEK-independent neurite branching in human neuroblastoma cells. J Cell Sci 2003; 116: 1925-35.
    42. Hartwig C, Veske A, Krejcova S, Rosenberger G, Finckh U. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin. BMC Neurosci 2005; 6: 53.
    43. Hoshino M, Yoshimori T, Nakamura S. Small GTPase proteins Rin and Rit Bind to PAR6 GTP-dependently and regulate cell transformation. J Biol Chem 2005; 280: 22868-74.
    44. Hoshino M, Nakamura S. The Ras-like small GTP-binding protein Rin is activated by growth factor stimulation. Biochem Biophys Res Commun 2002; 295: 651-6.
    45. Shi GX, Han J, Andres DA. Rin GTPase couples nerve growth factor signaling to p38 and b-Raf/ERK pathways to promote neuronal differentiation. J Biol Chem 2005; 280: 37599-609.
    46. Miyamoto-Sato E, Ishizaka M, Horisawa K, et al. Cell-free cotranslation and selection using in vitro virus for high-throughput analysis of protein-protein interactions and complexes. Genome Res 2005; 15: 710-7.
    47. Hoshino M, Nakamura S. Small GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells. J Cell Biol 2003; 163: 1067-76.
    48. Spencer ML, Shao H, Tucker HM, Andres DA. Nerve growth factor-dependent activation of the small GTPase Rin. J Biol Chem 2002; 277: 17605-15.
    49. Shi GX, Jin L, Andres DA. Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Mol Cell Biol 2008; 28: 4940-51.
    50. Waschek JA. Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci 2002; 24: 14-23.
    51. Cully M, Genevet A, Warne P, et al. A role for p38 stress activated protein kinase in regulation of cell growth via TORC1. Mol Cell Biol 2009.
    52. Rouzaire-Dubois B, O'Regan S, Dubois JM. Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. J Cell Physiol 2005; 203: 243-50.
    53. Bharmal S, Slonimsky JD, Mead JN, et al. Target cells promote the development and functional maturation of neurons derived from a sympathetic precursor cell line. Dev Neurosci 2001; 23: 153-64.
    54. Ono K, Han J. The p38 signal transduction pathway activation and function. Cellular Signalling 2000; 12: 1-13.
    55. Feng Y, Wen J, Chang CC. p38 Mitogen-activated protein kinase and hematologic malignancies. Arch Pathol Lab Med 2009; 133: 1850-6.
    56. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal 2000; 12: 1-13.
    57. Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 2001; 13: 299-310.
    58. Matthay KK, Brisse H, Couanet D, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer 2003; 98: 155-65.
    59. Pfenninger KH, Laurino L, Peretti D, et al. Regulation of membrane expansion at the nerve growth cone. J Cell Sci 2003; 116: 1209-17.
    60. Laurino L, Wang XX, de la Houssaye BA, et al. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 2005; 118: 3653-62.
    61. Pfenninger KH. Plasma membrane expansion: a neuron's Herculean task. Nat Rev Neurosci 2009; 10: 251-61.
    62. Glebova NO, Ginty DD. Growth and survival signals controlling sympathetic nervous system development. Annu Rev Neurosci 2005; 28: 191-222.

    無法下載圖示 校內:2015-01-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE